Term Structure Models with Negative Interest Rates

Yoichi Ueno
Bank of Japan

Summer Workshop on Economic Theory
August 6, 2016

NOTE: Views expressed in this paper are those of author and do not necessarily reflect those of the Bank of Japan or the Institute for Monetary and Economic Studies.
Background

- The total amount of fixed-rate sovereign debt trading at negative yields is $10.4 trillion ($7.3 trillion long term and $3.1 trillion short term) as of May 31 (Fitch, 2016).
- It had been assumed that nominal interest rates could not fall below zero as long as people could hold currency. Recent episodes, however, show that negative-yielding government bonds can coexist with currency.
- The power of arbitrage between government bonds and currency is not so strong as to forbid bonds’ yields falling below zero, although it is proposed that arbitrage still works to the extent that there exists a negative limit that nominal interest rates cannot go beyond (Viñals et al. (2016), Witmer and Yang (2016)).
After the introduction of the negative IOER, government bond yields not only in shorter terms but also in longer terms have fallen below zero. Furthermore, government bond yields in various terms have become more deeply negative than the IOER.
The negative interest rate policy is conducted together with other unconventional monetary policy measures such as quantitative easing and/or forward guidance. This combination of unconventional policy measures causes some difficulties in evaluating the single effect of each policy measure. Besides, negative interest rates in nominal terms had been thought to be unreal, so theories and models to deal with negative interest rates are underdeveloped.
Contribution

- Develop a model to evaluate the effects of unconventional monetary policy measures including the negative interest rate policy on government bond term structures.
- Generalize two popular models, the Gaussian affine model and the Black model.
 - The main difference between the two popular models is how they deal with non-negativity of nominal interest rates, or the power of arbitrage between government bonds and cash.
 - Arbitrage between bonds and cash still works in the newly proposed model (Extended model).
 - But, it is not so powerful as to prohibit bond yields becoming lower than the interest rate on cash or reserves.
Contribution (cont.)

- Propose an efficient and accurate solution method able to apply to both the Black model and the Extended model.
- Show that the Extended model is superior to the Gaussian affine model and the Black model by estimation results using government bond term structure data from Switzerland, Germany and Japan.
- Quantify each effect of forward guidance, quantitative easing and the negative policy interest rate.
- Find that the power of arbitrage between money or reserves and government bonds moves in tandem with basis swap spreads.
Model

\[i_t = s_t 1_{s_t \geq y_t} + \{ \varphi_t s_t + (1 - \varphi_t) y_t \} 1_{s_t < y_t} \]

\[s_t = \rho x_t \]

\[dx_t = \kappa_x (\theta_x - x_t) dt + \sigma_x dW_{x,t}^Q \]

\[dy_t = \sigma_y dW_{y,t}^Q \]

\[\varphi_t = \varphi_t^* 1_{0 \leq \varphi_t^* \leq 1} + 1_{1 \leq \varphi_t^*} , \]

\[d\varphi_t^* = \sigma_{\varphi^*} dW_{\varphi^*,t}^Q . \]

\[\lambda_t = \lambda_0 + \lambda_1 x_t \]

\[dW_t^P = \lambda_t dt + dW_t^Q \]
Figure 1: Relationship between the nominal short rate and shadow rate
Figure 2: Cumulative probability distribution function of nominal short rate

Note: one-factor model, $s_t = 0$, $y_t = 0$, $E_t[s_{\tau}] = -0.01, Var_t[s_{\tau}] = 0.02^2$.
Approximation methods

- Government bond price, P_τ, and yield, R_τ, at maturity τ

$$P_\tau \equiv E^Q \left[exp \left(- \int_0^\tau i_t \, dt \right) \right],$$

$$R_\tau \equiv - \log(P_\tau)/\tau.$$

- Priebsch (2013): 2nd order approximation of bond yields;

$$R_\tau \approx \frac{1}{\tau} \left(E^Q \left[\int_0^\tau i_t \, dt \right] - 0.5 Var^Q \left[\int_0^\tau i_t \, dt \right] \right).$$
Approximation methods (cont.)

- New approximation method

\[I_{\tau} \approx \tilde{I}_{\tau} \equiv \alpha_0 + \alpha_1 \frac{i_1}{4\tau} + \alpha_2 \frac{i_2}{4\tau}, \]

\[P_{\tau} \approx E^Q[\exp(-\tilde{I}_{\tau})]. \]

\[R_{\tau} \approx -\log(E^Q[\exp(-\tilde{I}_{\tau})]) / \tau, \]

- The parameters \(\alpha_0, \alpha_1, \alpha_2 \) are determined by minimizing the mean squared error as follows:

\[
\min E^Q \left[(I_{\tau} - \tilde{I}_{\tau})^2 \right]
\]

s.t.

\[E^Q[I_{\tau}] = E^Q[\tilde{I}_{\tau}], \]

\[Var^Q[I_{\tau}] = Var^Q[\tilde{I}_{\tau}]. \]
Approximation methods (cont.)

Distribution of I_τ/τ and its approximations

Note: one-factor model, $x_0 = 0$, $y = 0$, $\theta = 0.01$, $\kappa = 0.1$, $\sigma = 0.2$, $\phi = 0$.
Maturity is 10 year. 100,000 paths are generated.
Approximation methods (cont.)

<table>
<thead>
<tr>
<th>Shadow rate</th>
<th>Maturity</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Y</td>
<td>5Y</td>
<td>10Y</td>
<td>30Y</td>
</tr>
<tr>
<td>Exact</td>
<td>0.98829</td>
<td>0.92449</td>
<td>0.84104</td>
<td>0.58363</td>
</tr>
<tr>
<td>Priebsch(2013)</td>
<td>0.98829</td>
<td>0.92456</td>
<td>0.84178</td>
<td>0.59507</td>
</tr>
<tr>
<td>Rate of deviation</td>
<td>0.00050%</td>
<td>0.00723%</td>
<td>0.08848%</td>
<td>1.95929%</td>
</tr>
<tr>
<td>difference bps</td>
<td>0.050</td>
<td>0.145</td>
<td>0.884</td>
<td>6.468</td>
</tr>
<tr>
<td>This paper</td>
<td>0.98829</td>
<td>0.92449</td>
<td>0.84101</td>
<td>0.58294</td>
</tr>
<tr>
<td>Rate of deviation</td>
<td>0.00049%</td>
<td>-0.00011%</td>
<td>-0.00369%</td>
<td>-0.11872%</td>
</tr>
<tr>
<td>difference bps</td>
<td>0.049</td>
<td>-0.002</td>
<td>-0.037</td>
<td>-0.396</td>
</tr>
<tr>
<td>Exact</td>
<td>0.99463</td>
<td>0.94622</td>
<td>0.87124</td>
<td>0.61258</td>
</tr>
<tr>
<td>Priebsch(2013)</td>
<td>0.99463</td>
<td>0.94628</td>
<td>0.87192</td>
<td>0.62391</td>
</tr>
<tr>
<td>Rate of deviation</td>
<td>-0.00050%</td>
<td>0.00612%</td>
<td>0.07800%</td>
<td>1.84886%</td>
</tr>
<tr>
<td>difference bps</td>
<td>-0.050</td>
<td>0.122</td>
<td>0.780</td>
<td>6.107</td>
</tr>
<tr>
<td>This paper</td>
<td>0.99462</td>
<td>0.94622</td>
<td>0.87122</td>
<td>0.61189</td>
</tr>
<tr>
<td>Rate of deviation</td>
<td>-0.00051%</td>
<td>0.00007%</td>
<td>-0.00234%</td>
<td>-0.11223%</td>
</tr>
<tr>
<td>difference bps</td>
<td>-0.051</td>
<td>0.001</td>
<td>-0.023</td>
<td>-0.374</td>
</tr>
</tbody>
</table>

Note: one-factor model, $y = 0$, $\theta = 0.1$, $\kappa = 0.1$, $\sigma = 0.2$, $\phi = 0$.
Data

Switzerland

Source: Bloomberg
Data (cont.)

Germany

<table>
<thead>
<tr>
<th>3M</th>
<th>6M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>8%</td>
<td>6%</td>
<td>4%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>-2%</td>
<td>-0.5%</td>
<td>0%</td>
<td>0.5%</td>
<td>1%</td>
<td>1.5%</td>
<td>2%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Source: Bloomberg
Data (cont.)

Source: Bloomberg
Estimation method

- Estimate four kinds of models by (quasi-) maximum likelihood estimation; the Gaussian affine model, the Black model, two versions of the Extended model.
 - The difference between the two versions is whether φ_t is constant or variable.
- Use the Single-Stage Iteration Filter (SSIF) for the Black model and Extended model and the Kalman filter for the Gaussian affine model as in Joslin et al. (2011) and others.
 - In the Black model and Extended model, the relationships between factors and bond yields are not linear, so non-linear filtering method should be used.
 - The Extended Kalman filter is used in many studies (Xia and Wu (2016) and others). Tanizaki (1996), however, shows by Monte Carlo simulations that estimation biases arise in the Extended Kalman filter if there is high non-linearity in estimated systems and propose the usage of other non-linear filtering methods including SSIF.
Estimation results: Parameters

<table>
<thead>
<tr>
<th></th>
<th>Gaussian affine</th>
<th>Black</th>
<th>Extended Fixed</th>
<th>Extended Variable</th>
<th>Switzerland</th>
<th>Gaussian affine</th>
<th>Black</th>
<th>Extended Fixed</th>
<th>Extended Variable</th>
<th>Germany</th>
<th>Gaussian affine</th>
<th>Black</th>
<th>Extended Fixed</th>
<th>Extended Variable</th>
<th>Japan</th>
<th>Gaussian affine</th>
<th>Black</th>
<th>Extended Fixed</th>
<th>Extended Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0555</td>
<td>0.0000</td>
<td></td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0999</td>
<td>0.0039</td>
<td></td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0153</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_φ</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0504</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0511</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average of log likelihood</td>
<td>41.4711</td>
<td>41.5710</td>
<td>41.8567</td>
<td>41.9377</td>
<td></td>
<td>42.8840</td>
<td>42.7793</td>
<td>43.2187</td>
<td>43.3157</td>
<td></td>
<td>41.4112</td>
<td>42.4020</td>
<td>42.6489</td>
<td>42.7703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(VS. Extended Fixed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(VS. Extended Variable)</td>
<td></td>
</tr>
<tr>
<td>Pseudo P-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td></td>
<td>297</td>
<td>297</td>
<td>297</td>
<td>297</td>
<td></td>
<td>327</td>
<td>327</td>
<td>327</td>
<td>327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimation results: RMSE

Switzerland

<table>
<thead>
<tr>
<th></th>
<th>3M</th>
<th>6M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian affine</td>
<td>7.86</td>
<td>7.44</td>
<td>11.33</td>
<td>5.77</td>
<td>6.88</td>
<td>6.27</td>
<td>4.48</td>
<td>5.75</td>
<td>6.97</td>
</tr>
<tr>
<td>Black</td>
<td>8.19</td>
<td>7.90</td>
<td>11.24</td>
<td>6.57</td>
<td>7.66</td>
<td>6.81</td>
<td>5.10</td>
<td>6.29</td>
<td>7.47</td>
</tr>
<tr>
<td>Extended Fixed</td>
<td>7.66</td>
<td>7.72</td>
<td>11.07</td>
<td>6.00</td>
<td>7.32</td>
<td>6.78</td>
<td>5.02</td>
<td>6.29</td>
<td>7.23</td>
</tr>
<tr>
<td>ExtendedVariable</td>
<td>7.64</td>
<td>7.37</td>
<td>11.15</td>
<td>6.00</td>
<td>7.08</td>
<td>6.37</td>
<td>4.54</td>
<td>5.85</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Germany

<table>
<thead>
<tr>
<th></th>
<th>3M</th>
<th>6M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Affine</td>
<td>5.19</td>
<td>5.59</td>
<td>8.79</td>
<td>5.72</td>
<td>6.66</td>
<td>6.82</td>
<td>6.87</td>
<td>6.20</td>
<td>6.48</td>
</tr>
<tr>
<td>Black</td>
<td>8.88</td>
<td>8.58</td>
<td>10.44</td>
<td>6.62</td>
<td>6.91</td>
<td>6.05</td>
<td>5.96</td>
<td>5.09</td>
<td>7.32</td>
</tr>
<tr>
<td>Extended Fixed</td>
<td>4.37</td>
<td>5.33</td>
<td>8.36</td>
<td>4.92</td>
<td>5.71</td>
<td>6.14</td>
<td>6.81</td>
<td>5.55</td>
<td>5.90</td>
</tr>
<tr>
<td>ExtendedVariable</td>
<td>4.78</td>
<td>5.50</td>
<td>8.51</td>
<td>4.57</td>
<td>5.35</td>
<td>5.42</td>
<td>6.03</td>
<td>5.14</td>
<td>5.66</td>
</tr>
</tbody>
</table>

Japan

<table>
<thead>
<tr>
<th></th>
<th>3M</th>
<th>6M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Affine</td>
<td>3.99</td>
<td>3.15</td>
<td>7.50</td>
<td>6.49</td>
<td>6.50</td>
<td>7.48</td>
<td>12.63</td>
<td>10.74</td>
<td>7.31</td>
</tr>
<tr>
<td>Black</td>
<td>4.95</td>
<td>4.50</td>
<td>8.13</td>
<td>6.95</td>
<td>7.33</td>
<td>7.51</td>
<td>12.39</td>
<td>9.66</td>
<td>7.68</td>
</tr>
<tr>
<td>Extended Fixed</td>
<td>4.22</td>
<td>3.72</td>
<td>7.71</td>
<td>6.73</td>
<td>7.04</td>
<td>7.19</td>
<td>12.25</td>
<td>9.66</td>
<td>7.32</td>
</tr>
<tr>
<td>ExtendedVariable</td>
<td>3.96</td>
<td>3.46</td>
<td>7.62</td>
<td>6.26</td>
<td>6.83</td>
<td>7.08</td>
<td>12.13</td>
<td>9.57</td>
<td>7.11</td>
</tr>
</tbody>
</table>
Estimation results: Volatility

Switzerland

Gaussian affine

Extended Variable

Data during positive interest

Data during zero interest

Data during negative interest

Model during positive interest

Model during zero interest

Model during negative interest
Estimation results: Volatility (cont.)

Germany

Gaussian affine

Extended Variable

Data during positive interest
Data during zero interest
Data during negative interest

Model during positive interest
Model during zero interest
Model during negative interest
Estimation results: Volatility (cont.)

Japan

Gaussian affine

Extended Variable

Data during positive interest Data during zero interest Data during negative interest

Model during positive interest Model during zero interest Model during negative interest
Estimation results: 10 year expected rate and term premium (cont.)
Estimation results: 10 year expected rate and term premium (cont.)

Germany

![Graph showing term premium, expected rate, market rate, and shadow rate over time in Germany.](image-url)
Estimation results: 10 year expected rate and term premium (cont.)

Japan

![Graph showing Term Premium, Expected Rate, Market Rate, and Shadow Rate over time with shaded areas for specific periods.](image-url)
Sensitivity of yield curves to the IOER

● Simple Example: \(E[i_t] = E[s_t 1_{s_t \geq y}] + y \times P(s_t < y) \)

\[E[s_t] = -0.01 \]
\[E[s_t^+] = 0.004 \]
\[E[s_t 1_{s_t > 1\%}] = 0.003 \]

\[E[i_t] = -0.01 \]
\[E[s_t^+] = 0.001 \]
\[E[s_t 1_{s_t > 1\%}] = 0 \]

<table>
<thead>
<tr>
<th>(E[i_t])</th>
<th>(y = 0%)</th>
<th>(y = -1%)</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E[s_t] = -1%)</td>
<td>0.40%</td>
<td>-0.20%</td>
<td>-0.60%P</td>
</tr>
<tr>
<td>(E[s_t] = -3%)</td>
<td>0.10%</td>
<td>-0.85%</td>
<td>-0.95%P</td>
</tr>
</tbody>
</table>
Sensitivity of yield curves to the negative interest rate policy (cont.)

Switzerland

<table>
<thead>
<tr>
<th>Year</th>
<th>$s(x_t)$</th>
<th>ϕ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/12</td>
<td>0.0%</td>
<td>0.03</td>
</tr>
<tr>
<td>2015/6</td>
<td>-0.5%</td>
<td>0.12</td>
</tr>
<tr>
<td>2016/6</td>
<td>-1.0%</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Germany

<table>
<thead>
<tr>
<th>Year</th>
<th>$s(x_t)$</th>
<th>ϕ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/6</td>
<td>0.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>2011/12</td>
<td>-1.1%</td>
<td>0.00</td>
</tr>
<tr>
<td>2016/6</td>
<td>-1.0%</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Sensitivity of yield curves to the negative interest rate policy (cont.)

Japan

<table>
<thead>
<tr>
<th>Year</th>
<th>s(\tau)</th>
<th>\varphi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/6</td>
<td>0.0%</td>
<td>0.00</td>
</tr>
<tr>
<td>2012/1</td>
<td>-1.5%</td>
<td>0.02</td>
</tr>
<tr>
<td>2016/6</td>
<td>-3.7%</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Relationship between quantitative easing and yield term premia: Switzerland

2Y

10Y
Relationship between quantitative easing and yield term premia: Germany

2Y

10Y
Relationship between quantitative easing and yield term premia: Japan

2Y

10Y
Decomposition of the yield curves

\[R_\tau \equiv -\log(P_\tau)/\tau \]
\[\equiv -\log \left(\frac{E^Q[\exp(-\int_0^\tau i(x_t, y_t, \varphi_t)dt)]}{\tau} \right) \]
\[\equiv f^Q(x_t, y_t, \varphi_t) \]
\[= E^P \left[\int_0^\tau i(x_t, 0, \varphi_t)dt \right] + \left\{ f^Q(x_t, 0, \varphi_t) - E^P \left[\int_0^\tau i(x_t, 0, \varphi_t)dt \right] \right\} \]
\[+ \left\{ f^Q(x_t, y_t, \varphi_t) - f^Q(x_t, 0, \varphi_t) \right\} . \]
Decomposition of the yield curves: Switzerland

2Y

10Y

term premium
expectation part
ioer effect

14/1 14/4 14/7 14/10 15/1 15/4 15/7 15/10 16/1 16/4

-1.2% -1.0% -0.8% -0.6% -0.4% -0.2% 0.0% 0.2% 0.4%

-2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5%
Decomposition of the yield curves: Germany
Decomposition of the yield curves: Japan

2Y

10Y

term premium
expectation part
ioer effect
What is behind the movements of the power of arbitrage?
A cross-currency basis swap

- A cross-currency basis swap is an agreement between two counterparties trading floating rate payments in their respective currencies.

- Without frictions in financial markets, a cross-currency swap should have a zero value with no spread on either side. But, there are relative funding costs in the different currencies over the lifetime of the swap. The market is charging a premium for transferring assets or liabilities from one currency to another. The cost is reflected as a spread on the floating leg in the foreign currency.

- U.S. investors can convert the cash flows from foreign government bonds in foreign currency to those in U.S. dollar through the basis swap market receiving premia. Even if the foreign government bond yields are negative, the large enough basis swap spreads can attract U.S. investors to investing the foreign government bonds.
Conclusion

- Develop a model to evaluate the effects of unconventional monetary policy measures including the negative interest rate policy on government bond term structures.
- Propose an efficient and accurate solution method applicable to both the Black model and the Extended model.
- Show that the Extended model is superior to the other models using data from Switzerland, Germany and Japan.
- Quantify each effect of FG, QE and the NIRP.
- Find that the power of arbitrage between money or reserves and government bonds moves in tandem with basis swap spreads.

➤ A two country term structure model is to be invented and empirically examined in future research.