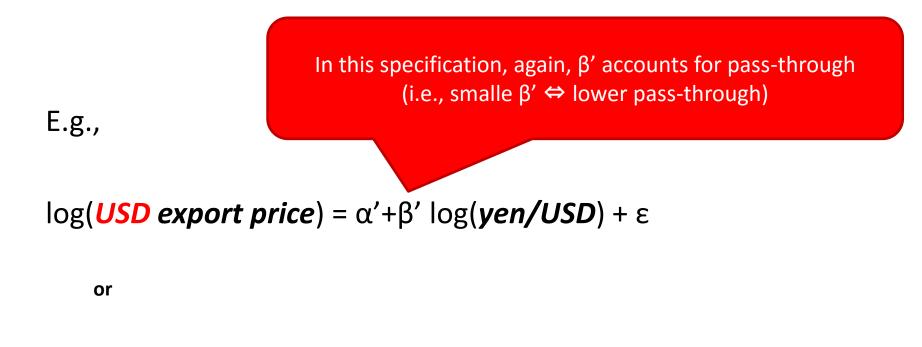
Testing Heterogeneous Currency Exchange Rate Pass-through: Evidence from Firm-Level Cotton Yarn Export Data

August 6th, 2016 SWET

Serguey Braguinsky (Maryland/NBER/Osaka) Daisuke Miyakawa (Hitotsubashi) Tetsuji Okazaki (Tokyo)

1-1. Introduction: "Pass-through 101"


Currency exchange rate \Rightarrow export price measured in *X* (e.g., *yen*) $\underbrace{E.g.,}_{\text{log}(\text{yen export price}) = \alpha + \left[\beta\right] \log(\text{yen/USD}) + \varepsilon$ or $\Delta \log(\text{yen export price}) = \alpha + \left[\beta\right] \Delta \log(\text{yen/USD}) + \varepsilon$

 $\Rightarrow \left[\beta \right] \doteq 0$: <u>Only</u> the export price measured in <u>local</u>-(i.e., destination-)currency fluctuates (i.e., <u>complete pass-through</u>)

 \Rightarrow $\begin{bmatrix} \beta \end{bmatrix} \doteq 1: Only$ the export price measured in <u>home</u>-currency fluctuates (\Rightarrow <u>profit margin</u> is altered if production cost is not altered)

- **□** "Incomplete" pass-through: $\beta \neq 0$
 - Implication: Export dynamics (e.g., disconnect puzzle: macro), market structure (industry), and firms' pricing behavior (micro)

<u>Note</u>: "Pass-through" on export price measured in local-currency

 $\triangle \log(USD \text{ export price}) = \alpha' + \beta' \triangle \log(\text{yen/USD}) + \epsilon$

1-2. Introduction: Background issues

- Well known "incomplete" pass-through phenomenon
 - Gopinath et al. (AER 2010), Nakamura & Steinsson (AER 2012)
 - ⇒ <u>Note</u>: Some mechanism seems to be there but exactly what?
- Potentially many firm-level "heterogeneity"
 - Melitz & Ottaviano (RES 2008): Price
 - Atkeson & Burstein (AER 2008): Market share
 - Baldwin & Harrigan (AEJ-Micro 2011): Product quality
 - Amiti et al. (AER 2014): Import intensity & market share
 - ⇒ <u>Note</u>: Many potentially important factors but separately examined...

"Far less than ideal" data

- Aggregate data or unit value computed from custom data are used...
- Exception? Goldberg & Verboven (RES 2001): Automobile, Nakamura & Zerom (RES 2010): Coffee, Fitzgerald & Haller (RES 2014): "Plant-product"
 - ⇒ <u>Note</u>: Still coarse & not interacted with firm-level heterogeneity

2. This paper

In practice, different counts are considered as different products (e.g., In modern clothing, dress shirt: 40-120 count, casual shirt: 20-80 count)

Ideal data

Highly homogenous product (cotton yarn in a specific count: "16-bante")

⇒ Even better than Fitzgerald & Haller (2014): SIC 8 digit-level

(E.g., 22810302: COTTON YARN, SPUN)

- ⇒ Exported to a specific (Shanghai) market
- High frequency (monthly) firm-level export price data

⇒ Allows panel estimation to control for many unobservable factors

Exogenous currency exchange rate dynamics under the gold standard in Japan and the silver standard in China (i.e., destination country)

Comprehensive analysis of firm heterogeneity

- Accompanied by comprehensive firm characteristics
 - ⇒ Explicitly study multiple factors

⇔ Historical but unparalleled data (Braguinsky et al. AER 2015)

3. Key takeaways

- \Box Low unconditional pass-through rate (\Leftrightarrow Fitzgerald & Haller 2014)
- Large firm-level heterogeneity is masked in this unconditional estimation, and pass-through turns out to depend on...
 - TFP, firm size, import intensity \star as in the extant studies

Pass-through also depends on ...

- Labor skill★ (⇔Product quality),
- Inventory turnover \bigstar (\Leftrightarrow Financial constraint)
- Aggregate-level funding rate \star (bit puzzling direction though...)
- "* " are fairly robust to the inclusion of (i) timing of entry to export market, (ii) geographical location, and (iii) other currency exchange rate dynamics etc. Access to major ports, cities, labor pool etc.
- ⇒ First analysis employing extremely precise price data to uncover how **multiple** firm heterogeneities affect pass-through

4-1. Literature: "Mark-up" channel

□ Larger β (⇔lower pass-through) when...

Higher productivity (Lower price: Melitz & Ottaviano RES 2008)

Higher market share (Atkeson & Burstein AER 2008)

Higher product quality (Baldwin & Harrigan AEJ-Micro 2011)

← Lower price elasticity of <u>demand</u>
 ⇔ Higher mark-up dynamics ⇔ Lower pass-through

4-2. Literature: "Marginal cost" channel

\Box Larger β (\Leftrightarrow lower pass-through) when...

- Higher import intensity of intermediate goods (Amiti et al. AER 2014)
- Central product (Chatterjee et al. AEJ-Policy 2013)
- Higher local distribution cost share (Corsetti & Dedola JIE 2005)
- Higher productivity

← Higher sensitivity of production/supply cost to exchange rate
 ⇔ Higher sensitivity of home currency-measured price
 ⇔ Lower pass-through

4-3. Literature: Empirical

□ Firm heterogeneity & pass-through

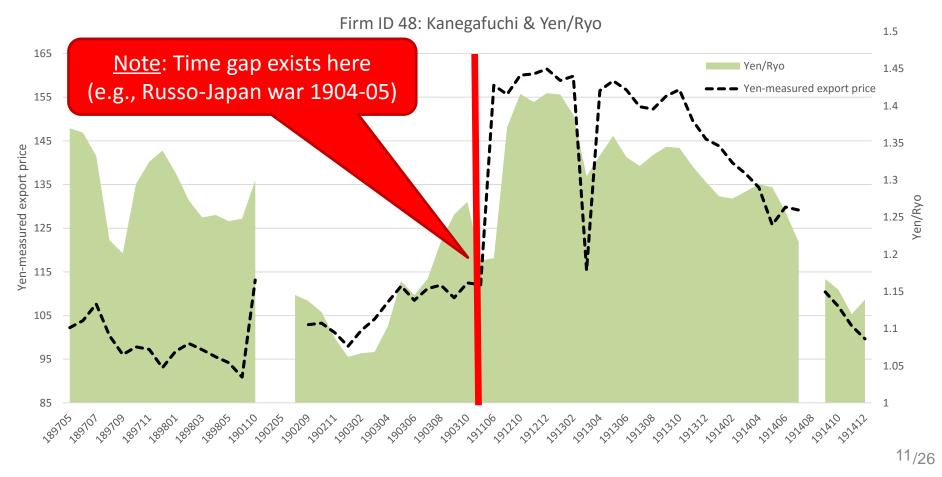
- Berman et al. (QJE 2012): Firms w/ higher TFP shows larger mark-up dynamics (⇔lower pass-through)
- Amiti, et al. (AER 2014): (i) Firms w/ larger market share and/or (ii) firms w/ higher import intensity shows larger mark-up dynamics (⇔ lower pass-through)

⇒ Gopinath (JME 2013): "Need to incorporate <u>multiple factors</u> at once" (Against somewhat sloppy analysis in Strasser JME 2013)

5-1. Data: Firm-month export price

- □ Hand-collected from industry report (Geppo: 大日本紡績連合会月報)
- Monthly frequency firm-level export price data
- □ 1897/5~1898/6, 1901/10, 1902/4~1903/12, 1911/6~1914/12
 - ⇒ <u>Note</u>: The gold standard was introduced in 1897
 - ⇒ <u>Note</u>: Periods associated with major events (e.g., The Boxer Rebellion, Japan-Russo war) are exluded
- □ Firm ID, count-level (e.g., 16, 20, etc.) export price
 - For each firm × count, we have max (highest reported prices), min (lowest), avr (average price over month)
 - Mainly 16 and 20 count data are available (also 10, 12, and 14)
 - Price information from China and Indian producers are also available
- □ Domestic price (製糸十六番手一梱平均代価)
- Export quantity (16 and 20 count: converted to 梱数)
- Many missing data on export quantity (even when prices are reported)
- Mumbai price is also partially available

<u>Note</u>: 22, 23, 24, 30, 32, 40, 41, 42, 60, and 80 counts were actually produced

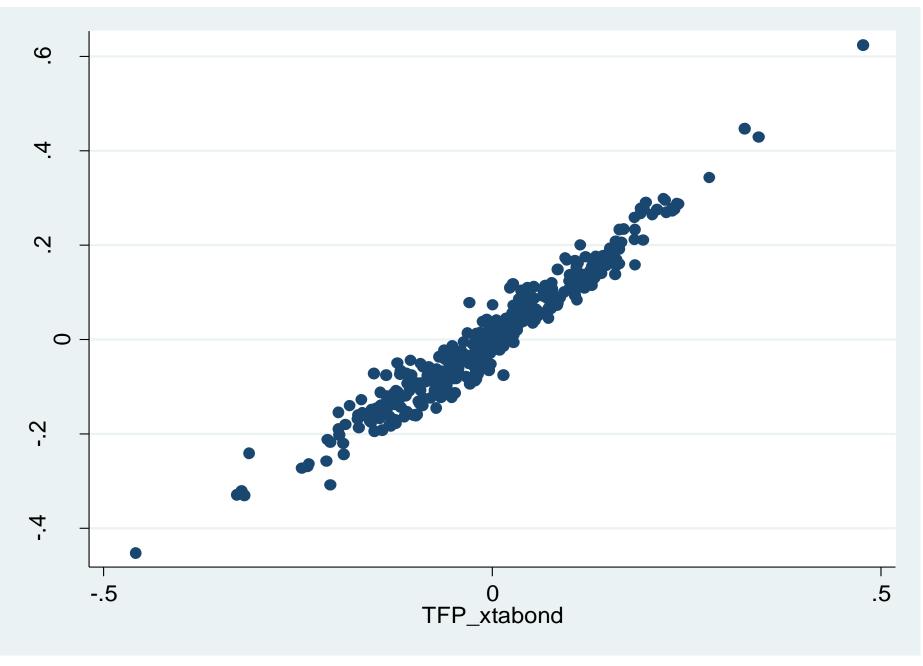

三十) 現人筋は安静口の住民送りの変化 した、 市 の した、 中 野 馬和合人室、 三 一 七 一 定 大 調 の 取 北 二 二 二 二 二 二 二 二 二 二 二 二 二	かお定式のするのの事でであったので、 ながので、 し従って質相の出来たるのの事でで、 し従って質相の出来たるのの事でで、 なったいは従って質相の出来たるのの事で、 し従って質相の出来たるのの事で、 なったい、 なっ、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、 なったい、
り買人筋は安附口の住民送りの姿にて氣配も頓と引立 う買人筋は安附口の住民送りの姿にて氣配も頓と引立 ち 和 田 -1 七、 二 二 二 二 二 二 二 二 二 二 二 二 二	 株式の高の各銘物にも一次の加し 生物在荷薄の事なれは氣配強気を含み向一 生等 生等 市で等 市での加し 生等 市での加し 市で等 市での加し 市本直 市での加し 市での 市での
 B * *(+ ニ 手 C = 1+手 C = 1+F <lic 1+f<="" =="" li=""> <lic 1+f<="" =="" li=""></lic></lic>	 ・ ・ ・

5-2. Data: Currency exchange rate

□ Data book of Japanese economic statistic (日本経済統計総観)

Monthly frequency yen/ryo(Chinese currency) exchange rate

Highest, lowest, average (used in our analysis) for each month


5-3. Data: Firm characteristics

Firm characteristics

- Geppo & financial statement (考課状)
- Items included in the data
 - <u>Output</u>: Measured for two-types of machinery (ring & mule)
 - <u>Capital</u>: Two-types of machinery, operating hours & days, power source
 - Labor: Male & female w/ wage information
 - Intermediate good: Cotton & coal
 - <u>Cotton sources</u>: Japan, China, India, US, HK, Vietnam, Egypt, others
 - <u>Product composition</u>: Share of 16 & 20 counts out of total production
 - Location: All the plants (with detailed information)
 - Almost all the P/L & B/S items (e.g., inventory, sales)
 - Firm age, board member, managers' attributes (e.g., education), plantlevel attributes, entry/exit (firm & plant) ⇒ Planning to use...

\Rightarrow At most, 32 firms \times 57months (max #obs = 517 in the current analysis)

Note: Production data are handled to compute TFPQ by following Braguinsly et al. (AER 2015)

¹³ /26

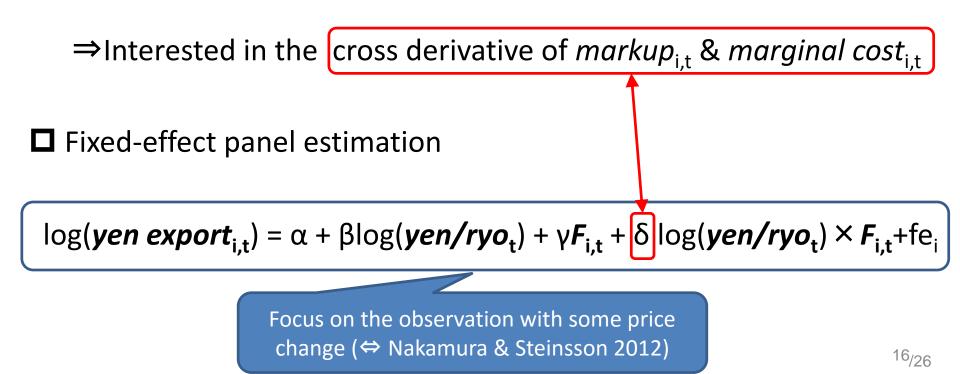
5-4. Data: Summary stat (a) - (c)

Variable	Definition	Obs	Mean	Std. Dev	Min	Max		
Sample (a): Sample for Table 2								
Р	Natural logarithm of Yen(i.e., home currency)-measured 16- bante cotton exported	436	4.67	0.16	4.05	5.08		
ER	Exchange rate measured as units of yen per one ryo	436	0.21	0.08	0.06	0.35		
TFP	Firm-level total factor productivity obtained from fixed-effect panel estimation	436	0.00	0.13	-0.36	0.45		
	Sample(b): Sample for Table	3						
Р	Natural logarithm of Yen(i.e., home currency)-measured 16- bante cotton exported	353	4.67	0.16	4.46	5.08		
ER	Exchange rate measured as units of yen per one ryo	353	0.22	0.07	0.06	0.35		
TFP	Firm-level total factor productivity obtained from system GMM estimation	353	0.00	0.12	-0.33	0.34		
	Sample(c): Sample for Table	4						
Р	Natural logarithm of Yen(i.e., home currency)-measured 16- bante cotton exported	353	4.67	0.16	4.46	5.08		
ER	Exchange rate measured as units of yen per one ryo	353	0.22	0.07	0.06	0.35		
TFP	Firm-level total factor productivity obtained from fixed-effect panel estimation	353	0.01	0.13	-0.33	0.45		
WAGE	Natural logarithm of female worker wage	353	0.00	0.29	-0.49	0.58		
SIZE	Natural logarithm of output	353	0.06	1.14	-2.48	2.68		

Note: All the variables other than IMPORT is demeaned

5-5. Data: Summary stat (d)

Sample(d): Sample for Table 5


Р	Natural logarithm of Yen(i.e., home currency)-measured 16- bante cotton exported	189	4.68	0.17	4.51	5.08
ER	Exchange rate measured as units of yen per one ryo	189	0.21	0.07	0.06	0.35
TFP	Firm-level total factor productivity obtained from fixed-effect panel estimation	189	0.02	0.13	-0.31	0.43
WAGE	Natural logarithm of female worker wage	189	0.06	0.28	-0.43	0.53
SIZE	Natural logarithm of output	189	0.26	1.23	-2.48	2.68
IMPORT	Import from Ryo export source countries / Import from all the souces (Note: this variable is time-invariant and measured as of the initial appearance in the data)	189	4.46	20.60	-39.67	39.23
INVENTORY	(Inventory + Account receivable) / Sales	189	-0.01	0.08	-0.09	0.26
RATE	BOJ's discount rate	189	-0.15	0.64	-1.05	1.14
SHARE	Output share of 16 count cotton yarn	189	0.02	0.24	-0.42	0.55
CAPUTIL	Capuital utilization rate	189	-0.01	0.14	-0.41	0.51

6-1. Empirical analysis: Model

□ Theoretical underpinnings (needs to be beefed up...):

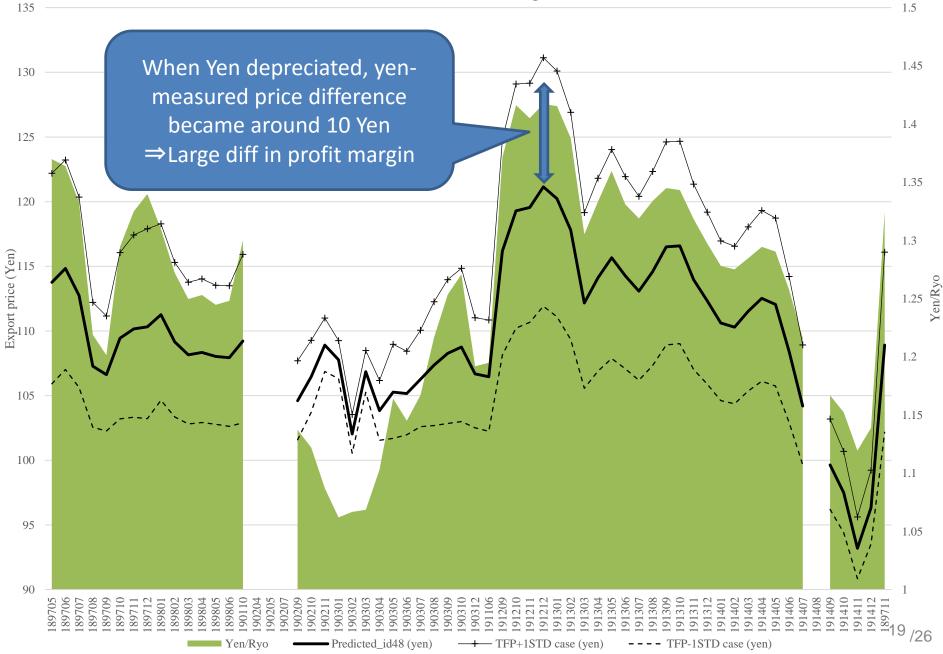
 $log(yen export_{i,t}) = log(markup_{i,t}) + log(marginal cost_{i,t})$

 $= \log(markup_{i,t}(yen/ryo_t, F_{i,t})) + \log(marginal cost_{i,t}(yen/ryo_t, F_{i,t}))$

6-1. Empirical analysis: Model

Allison's hybrid random-effect estimation (Allison 2009)

 $log(yen export_{i,t}) = \alpha + \beta log(yen/ryo_t) + \gamma_1(F_{i,t} - F_{i,t_avr}) + \gamma_2(F_{i,t_avr}) + \delta_1[\{log(yen/ryo_t) \times F_{i,t}\} - \{log(yen/ryo_t) \times F_{i,t}\}_{avr}] + \delta_2\{log(yen/ryo_t) \times F_{i,t}\}_{avr}\} + re_i$


Correlated coefficient random-effect estimation (Wooldridge 2010)

$$log(yen export_{i,t}) = \alpha + \beta log(yen/ryo_t) + \gamma_1 F_{i,t} + \gamma_2 F_{i,t_avr} + \delta_1 log(yen/ryo_t) \times F_{i,t} + \delta_2 \{ log(yen/ryo_t) \times F_{i,t} \}_{avr} + re_i$$

6-2. Empirical analysis: TFP

	De	ependent variable: P			
	Fixed-effect model	Fixed-effect model	Allison (2009) Hybrid random-effect model	Correlated ran effects mod	
Independent Variables	Coef. Std. Err.	Coef. Std. Err.	Coef. Std. Err.	Coef. Std.	Err.
ER	1.067 0.070 ***	1.024 0.068 ***		1.019 0.0	068 ***
TFP		-0.400 0.150 ***		-0.407 0.	149 ***
ER×TFP		1.748 0.629 ***		1.786 0.0	628 ***
ER - ER_AVR		•••••	1.019 0.068 ***		
TFP - TFP_AVR	Almost same r	nagnitude	-0.407 0.149 ***		
ER×TFP - ER×TFP_AVR	reporte	d in	1.786 0.628 ***		
ER_AVR	Fitzgerald & Ha	aller (2014)	-0.118 0.346	-1.137 0.1	352 ***
TFP_AVR	U	· · ·	-0.131 0.628	0.276 0.	640
ER×TFP_AVR	i.e., β=1.01 (std	. 0.090)	0.486 2.788	-1.300 2.5	831
constant	4.462 0.016 ***	4.451 0.015 ***	4.643 0.072 ***	4.643 0.0	072 ***
No. of Obs.	517	436	436	436	
No. of Groups	32	30	30	30	Fitzgerald & Haller
Observation per group					(2014)
min	1	1	1	1	, ,
avr	16.2	14.5	14.5	14.5	×
max	57	57	57	57	Berman et al.
F or Wald chi2	231.55	76.79	227.30	227.30	
Prob > F or chi2	0.0000	0.0000	0.0000	0.0000	(2012)
R-sq within	0.3236	0.3637	0.3637	0.3637	i.e., depends on
between	0.3236	0.3637	0.0136	0.3637	· •
overall	0.2074	0.1767	0.1791	0.0130	firm characteristics
corr(u_i, xb)	-0.0870	-0.1267	0.1791 0 (assumed)	0.1791 0 (assumed	d)
$\frac{1}{F \text{ test that all u_i=0}}$	0.0070	0.1207	(ussundd)	0 (ussuine)	<u> </u>
F –	12.93	18.61	n.a.	n.a.	¹⁸ /26
Prob>F	0.0000	0.0000	n.a.	n.a.	

Prediced Yen price w/ different TFP (basecase = id48: Kanegafuchi)

6-3. Empirical analysis: Another TFP measure

□ Robust to alternative TFP computation

Dependent variable: P								
	Fixed-	effect model		(2009) Hybrid -effect model	Correlated random- effects model			
Independent Variables	Coef.	Std. Err.	Coef.	Coef. Std. Err.		Std. Err.		
ER	1.016	0.076 ***			1.012	0.076 ***		
TFP	-0.469	0.187 **			-0.480	0.187 ***		
ER×TFP	2.529	0.789 ***			2.573	0.791 ***		
ER - ER_AVR			1.012	0.076 ***				
TFP - TFP_AVR			-0.480	0.187 ***				
ER×TFP - ER×TFP_AVR			2.573	0.791 ***				
ER_AVR			-0.321	0.495	-1.333	0.501 ***		
TFP_AVR			-0.280	1.103	0.200	1.116		
ER×TFP_AVR			1.690	4.827	-0.883	4.881		
constant	4.449	0.017 ***	4.686	0.106 ***	4.686	0.106 ***		

6-4. Empirical analysis: Full model

 1) Female wage (⇔quality 2) Import intensity 	/) [Dependent var	riable: P			
 ③ Inventory turnover ④ BOJ discount rate (sign?) 	???)	Fixed-effect model				
Independent Variables	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
ER	0.272	0.090 ***	0.691	0.065 ***	1.078	0.127 ***
TFP	-0.166	0.142	-0.079	0.108	-0.035	0.122
ER×TFP	0.200	0.686	-0.482	0.480	-0.144	0.585
WAGE	-0.219	0.079 ***	-0.315	0.068 ***	-0.045	0.072
ER×WAGE	1.511	0.384 ***	2.149	0.328 ***	1.067	0.339 ***
SIZE	0.037	0.019 *	0.058	0.017 ***	0.071	0.017 ***
ER×SIZE	0.174	0.081 **	0.108	0.073	0.033	0.071
ER×IMPORT	0.018	0.003 ***	0.015	0.003 ***	0.010	0.003 ***
INVENTORY	0.985	0.376 ***			0.728	0.322 **
ER×INVENTORY	-7.053	1.682 ***			-4.604	1.467 ***
RATE			-0.072	0.015 ***	-0.191	0.024 ***
ER×RATE			0.324	0.073 ***	0.777	0.109 ***
constant	4.575	0.018 ***	4.497	0.014 ***	4.392	0.028 ***

6-5. Empirical analysis: Robustness

	De	pendent varial	ole: P			
Independent Variables	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
ER	1.033	0.134 ***	0.724	0.144 ***	0.720	0.156 ***
TFP	-0.078	0.131	-0.022	0.121	-0.068	0.128
ER×TFP	0.171	0.615	-0.412	0.575	-0.136	0.601
WAGE	-0.010	0.079	-0.042	0.070	-0.025	0.078
ER×WAGE	0.818	0.372 **	1.061	0.340 ***	0.883	0.378 **
SIZE	0.058	0.030 *	0.073	0.017 ***	0.086	0.032 ***
ER×SIZE	0.061	0.078	0.071	0.072	0.070	0.079
ER×IMPORT	0.012	0.003 ***	0.014	0.003 ***	0.014	0.004 ***
INVENTORY	0.669	0.328 **	0.882	0.322 ***	0.891	0.336 ***
ER×INVENTORY	-4.350	1.502 ***	-5.796	1.524 ***	-5.397	1.593 ***
RATE	-0.186	0.026 ***	-0.186	0.024 ***	-0.182	0.026 ***
ER×RATE	0.752	0.112 ***	0.647	0.111 ***	0.652	0.115 ***
ER_R			0.211	0.616	0.078	0.648
ER_R×IMPORT_R			-0.025	0.030	-0.035	0.037
ER_D			7.407	1.630 ***	6.965	1.687 ***
ER_D×IMPORT_D			0.131	0.071 *	0.150	0.081 *
ER_S			-5.082	1.383 ***	-5.043	1.432 ***
ER_S×IMPORT_S			-0.705	0.694	-0.610	0.704
constant	0.273	2.282	-3.808	1.991 *	-6.384	2.883 **
Prefecture control		yes		no		yes
Other currency exchange rates		no		yes		yes

22 /26

6-6. Empirical analysis: Something more

Incorporate and consider additional factors:

- Interaction b/w exchange rate & <u>centrality of 16 count</u>: (+/-) but insig
 - Chatterjee et al. (2013): Pass-through rate for non-centered product is high (i.e., central product shows larger β)
 - ⇔ Also, "urgency" channel (i.e., products associated w/ less efficient/flexible production (e.g., non-central)⇔ high pass-through
- Interaction b/w exchange rate & <u>1(early entry to export market</u>): (+) but insig
 ⇔ Early entrant has some market power
- Interaction b/w exchange rate & <u>1(headquartered in Tokyo)</u>: (+) but insig
 ⇔ Distribution cost as in Berstein & Jaimovich (2012)?
- Exclude the periods for WWI (July 1914~)

⇒ Results in "full model" are robust to the inclusion of these items

7. Some preliminary results & discussion

20 counts? <u>Only female wage matters</u>...

Management quality?

- Capacity utilization: <u>Insignificant</u>...
- Inventor management: Better measures?
- Labor management: "Sotan"?
- □ Human network: Financial linkage to bank owner & "fixer"?
- □ More detailed information on the structure of production cost?
- **D** Dumping behavior?
- □ Choice of invoice currency?

8. Things to be done

Data description: E.g., attrition (and the reason) etc.

□ Further precise picture:

- Financial friction proxied for by "network w/funding sources" information and/or "Leverage × BOJ rate" etc.
- Use domestic price (exporter and non-exporter firms) as a benchmark
- Export quantity: Extensive margin (i.e., truncated data structure selection), residual demand faced by individual firms

□ Some additional robustness checks:

- Asymmetry b/w appreciation and depreciation?
- Dynamic (time-variant) aspect of incomplete pass-through

9. <u>Conclusion</u>

Use the ideal data and confirm heterogeneous pass-through in a comprehensive way: Product quality, import, financial factor etc.

□ Hopefully, go deeper into financial/management aspects...

Other projects using this data

Pre-export investment (i.e., tangibles & borad intangibles)

Pre-export & post-export productivity/profitability dynamics

Utilizing network information more intensively

Thank you and comments are welcome!

<Contact Information>

Serguey Braguinsky:

Robert H. Smith School of Business and the Department of Economics, University of Maryland, NBER, and Osaka University 4558 Van Munching Hall, College Park, MD 20742 USA;

E-mail: sbraguinsky@rhsmith.umd.edu

Daisuke Miyakawa:

Graduate School of International Corporate Strategy, Hitotsubashi University 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8439 JAPAN E-mail: <u>dmiyakawa@ics.hit-u.ac.jp</u>

<u>Tetsuji Okazaki</u>:

Graduate School of Economics, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN E-mail: <u>okazaki@e.u-tokyo.ac.jp</u>