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Abstract

This study seeks to explain the emergence of fat-tailed distributions of trading

volumes and asset returns in financial markets. We use a rational expectations

form of the herding model. In the model, traders infer other traders’ private

signals regarding the value of an asset by observing their aggregate buying ac-

tions. The rational expectations equilibrium outcome entails an upward sloping

demand curve. This is because the information contained in others’ signals is

more encouraging than is reflected in the incremental price. That is, there are

strategic complementarities in informed traders’ buying actions. In this envi-

ronment, we show that equilibrium trading volumes and asset returns follow
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fat-tailed distributions without making any parametric assumptions on private

signals. Specifically, we demonstrate that the trading volume follows a power-

law distribution when the number of traders is large and the signal is noisy.

Furthermore, we provide simulation results to show that our model successfully

reproduces the observed distributions of daily stock returns.

Keywords: Herd behavior; trading volume; stock return; fat tail; power law

JEL classification code: G14

1 Introduction

A traditional economic explanation for the excess volatility of trading volumes and

returns of financial markets relies on rational herd behavior by traders. In a situation

where traders’ action space is coarser than their private state space, their observable

actions only partially reveal privately held information regarding the value of an asset.

This property makes it possible for a single trader’s action to cause an avalanche of

similar actions by other traders. The idea of a chain reaction through the revelation

of private information has been extensively discussed in the literature on herd behav-

ior, informational cascades, and information aggregation. However, there have been

few attempts to use herd behavior to explain fat-tailed distributions of stock return

fluctuations.

That stock returns exhibit fat-tailed and leptokurtic distributions has been well

established since Mandelbrot [22] and Fama [12]. The distribution of high-frequency

stock returns clearly deviates from the normal distribution in its tail, and often decays

slower than an exponential distribution. For example, Jansen and de Vries [17] have

shown empirically that stock returns have a distribution with its tail decaying as a

power function with the order of 3 to 5, which indicates that the fourth moment of the
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returns deviates substantially from a normal distribution. Such a fat tail and a high

kurtosis have been regarded as a cue for understanding the excess volatility of stock

returns.

This study shows that herd behavior generates fat tails in asset return distributions.

To this end, we propose a model consisting of informed and uninformed traders and

an auctioneer. The model closely builds on Minehart and Scotchmer [24] and Bru and

Vives [7]. There are a large number of informed traders who receive imperfect private

signals on the true value of an asset. The informed traders simultaneously choose be-

tween buying one unit of the asset or not buying the asset at all. To simplify the model,

we depart from Glosten and Milgrom [14] or Smith [28], by assuming that informed

traders cannot short-sell. We define a rational expectations equilibrium in which each

trader submits their demand schedule conditional on the price of the asset. The ra-

tional choice made by an informed trader is based on the private signal they receive

as well as the information revealed by other traders’ actions through the equilibrium

price. The price is set by an auctioneer, who aggregates the demand of the informed

traders and matches it with the supply schedule submitted by uninformed traders. We

show that, in this setting, the more that informed traders choose to buy the asset, the

higher the asset price, which in turn signals higher asset value. As a result, a single

trader’s buying action induces buying actions by other traders who would not have

bought otherwise. In this way, traders’ strategies exhibit complementarity, and their

actions are positively correlated.

The main theoretical contribution of our study is that the probability distribution

of the equilibrium number of buying traders is shown to exhibit a power-law tail with

an exponent of 0.5. A random variable M is said to follow a power-law distribution

with exponent α if Pr(M > m) is proportional to m−α for large values of m. In general,
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a power law with exponent α implies that any k-th moment of M is infinite for k ≥ α.

Thus, with exponent 0.5, the equilibrium number of buying traders does not have a

finite variance or mean. This indicates that the stochastic herd size in our equilibrium

exhibits large volatility. The volatile herding of traders results in equilibrium asset

price volatility.

Our model is similar to Keynes’s beauty contest in terms of the way it describes

herding behavior. Each trader recognizes that other traders possess private information

equally valuable to their own. Therefore, each trader seeks to mimic the average trader.

However, this behavior leads to a fragile equilibrium. Unlike the models that lead to

indeterminate equilibria, the equilibrium in our model is locally unique, because we

assume that traders’ actions are discrete. This allows us to quantitatively characterize

fluctuations in trading volumes and prices. The fluctuations are caused by randomness

in private signals. Our analysis demonstrates that a power-law distribution of trading

volumes emerges naturally in this setup.

Our study is related to the theoretical and empirical literature on imitative behav-

ior in financial markets. Scharfstein and Stein [27], Banerjee [4], and Bikhchandani,

Hirshleifer, and Welch [5] have developed models of herd behavior and informational

cascades. These models have been employed in a number of studies to examine financial

market crashes, including those by Caplin and Leahy [9], Lee [20] and Chari and Kehoe

[10]. However, herding behavior in these studies is all-or-nothing herding because of a

particular type of information structure they assume—sequential trading. As a result,

few studies in this literature address the issue of stochastic financial fluctuations. An

exception is the study by Gul and Lundholm [15], who demonstrated the emergence

of stochastic herding by endogenizing traders’ choice of waiting time. We follow this

approach and focus on the stochastic aspect of financial fluctuations, but deviate from
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it by employing a model in which traders move simultaneously, and the equilibrium

number of traders exhibits stochastic fluctuations. Our model of stochastic herding

contributes to the literature by showing that informational cascades can generate not

only extremely large fluctuations in trading volumes and prices but also an empirically

relevant regularity regarding the frequency distribution of these fluctuations, which is

summarized by power-law distributions.

While many statistical models are capable of replicating the power-law distribution

of asset returns, few economic models have been developed for the same purpose. An

important exception is the model developed by Gabaix et al. [13]. They offer empirical

evidence of the power laws for trading volumes and asset returns, and provide a model

which accounts for those distributions by making use of Zipf’s law for firm sizes, which

is a different power law from another context. Specifically, they argue that if the

amount of funds managed by traders follows a power law, trading volumes and price

changes also follow power laws. In contrast to Gabaix et al. [13], the present study

does not rely on heterogeneity across traders in accounting for power laws in financial

fluctuations. Instead, we assume that traders are homogeneous in size and in other

respects. We show that, even in this symmetric setting, the interaction of a large

number of traders generates stochastic herding to varying degrees (i.e., the number of

traders who decide to buy the asset differs), thereby generating power laws in financial

fluctuations. In so doing, we provide a new explanation for power laws in financial

fluctuations which is complementary to the one advocated by Gabaix et al. [13].1

1Another area to which this study, especially the technical section, is related is the literature on

critical phenomena in statistical physics. A number of statistical physicists have investigated the

empirical fluctuations of financial markets (surveys of these studies can be found in Bouchaud and

Potters [6] and Mantegna and Stanley [23]), and some studies in this literature reproduce the observed

power laws by applying a methodology often used for the analysis of critical phenomena to herd
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The remainder of the study is organized as follows. Section 2 presents the model.

Section 3 analytically shows that a power-law distribution emerges for trading volumes

when the number of traders tends to infinity, and provides an intuition for the mecha-

nism behind it. Section 4 presents numerical simulations to show that the equilibrium

volumes follow a power law under a finite number of traders, and that the equilibrium

return distribution matches its empirical counterpart. Section 5 concludes.

2 Model

2.1 Model and equilibrium

There are two states of the world, s = H,L. Throughout the study, we will assume

that the true state is H, unless stated otherwise. There is a common prior belief

Pr(H) = Pr(L) = 1/2. Informed trader i receives an imperfect and private signal

Xδ,i of the state. The signal is private in the sense that each trader does not observe

other traders’ signals. Also, the signal is imperfect in the sense that Xδ,i does not fully

reveal the true state. Signal Xδ,i is identically and independently distributed across

i with conditional cumulative distribution function F s
δ for s = H,L with common

bounded support Σ. Let Σ̄ denote the upper bound of Σ. We assume that F s
δ has a

continuous, strictly positive-valued density f sδ over Σ for s = H,L. We order the signal

behavior models (Bak, Paczuski, and Shubik [3]; Cont and Bouchaud [11]; Stauffer and Sornette [31]).

However, these studies do not model traders’ purposeful behavior and rational learning, and therefore

fail to link their analyses to the existing body of financial economics literature. More importantly,

these studies do not address why market activities exhibit criticality. This issue is important because,

according to these studies, power laws in financial fluctuations typically occur only when the parameter

that governs the connectivity of the networked traders takes a critical value. These two issues will be

addressed in this study.
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based on the monotone likelihood ratio property (MLRP) such that the likelihood ratio

`δ ≡ fLδ /f
H
δ is decreasing. MLRP holds for a signal with two states without loss of

generality (Smith and Sørensen [29]). We assume that the likelihood ratio `δ(x) satisfies

supx∈Σ |`δ(x)− 1| < δ. This assumption implies that the informativeness of the signal

is ordered by δ > 0.

We further define likelihood ratios λδ(x) ≡ FL
δ (x)/FH

δ (x) and Λδ(x) ≡ (1−FL
δ (x))/(1−

FH
δ (x)). As shown by Smith and Sørensen [29], MLRP implies that, for any x ∈ Σ,

λδ(x) > `δ(x) > Λδ(x) > 0, (1)

and that λδ(x) and Λδ(x) are strictly decreasing in x:

dλδ(x)

dx
=

fLδ (x)

FH
δ (x)

− FL
δ (x)fHδ (x)

(FH
δ (x))2

=
fHδ (x)

FH
δ (x)

(`δ(x)− λδ(x)) < 0, (2)

dΛδ(x)

dx
= − fLδ (x)

1− FH
δ (x)

+
(1− FL

δ (x))fHδ (x)

(1− FH
δ (x))2

=
fHδ (x)

1− FH
δ (x)

(Λδ(x)− `δ(x)) < 0.(3)

We consider a series of markets, indexed by the number of informed traders n =

no, no + 1, . . . in the market, where no is a large integer. Following Minehart and

Scotchmer [24], we consider informed traders who simultaneously choose whether to

buy one unit of an asset or to not buy the asset at all. The asset has a common value,

and is worth 1 in state H and 0 in state L to all traders. The trading unit of the asset is

given by 1/n. Each informed trader submits their demand function dn,i : R+ 7→ {0, 1}

to an auctioneer. The demand function dn,i = dn,i(pn) describes whether trader i with

private signal xδ,i buys or not for each possible price of the asset, pn, where dn,i = 1

indicates buying and dn,i = 0 not-buying. Aggregate demand expressed in terms of the

trading unit is D(pn) =
∑n

i=1 dn,i(pn)/n that maps R+ to {0, 1/n, 2/n, . . . , 1}.

Uninformed traders decide on whether to supply the asset depending only on pn.2

Let S(pn) denote the aggregate supply function of the uninformed traders. We assume

2The informational asymmetry between informed and uninformed traders in this model is similar
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that the supply function is continuous, differentiable, and upward sloping (S ′ > 0). We

assume that S(0.5) = 0. That is, the aggregate supply is 0 at the price level that reflects

the common prior belief. Furthermore, we assume that p̄ ≡ S−1(1) < 1. That is, even

in an equilibrium in which all n informed traders decide to buy, the equilibrium price p̄

does not achieve the maximum value of the asset, 1. Under this setup, the equilibrium

price P ∗n has a bounded support [0.5, p̄].

Transactions are implemented by an auctioneer, who receives the demand functions

(dn,i(·))ni=1 from the informed traders and the supply function S(·) from the uninformed

traders, and chooses equilibrium price p∗n such that D(p∗n) = S(p∗n).3 Let m∗n denote

the equilibrium number of buying traders, i.e., m∗n ≡ D(p∗n)n.

Each informed trader i computes by Bayes’ rule his posterior belief rn,i that the state

is H. Trader i forms the posterior belief using private signal xδ,i and price pn. Thus, the

posterior belief is a mapping r : R+ × Σ 7→ [0, 1] such that rn,i = r(pn, xδ,i). Informed

traders are assumed to be risk-neutral and to maximize their subjective expected payoff.

The expected payoff of a trader is 0 when dn,i = 0 regardless of the belief, whereas it

is rn,i − pn when dn,i = 1. Thus, trader i buys the asset if and only if rn,i ≥ pn.

For each realization of a profile of private signals (xδ,i)
n
i=1, a rational expectations

equilibrium consists of the number of buying informed traders m∗n, price p∗n, demand

functions (dn,i)
n
i=1, and the posterior belief r, such that (i) for any pn, dn,i(pn) maximizes

to event uncertainty, which was introduced by Avery and Zemsky [2] as a condition for herding to

occur in financial markets.
3This mechanism of implementing a rational expectations equilibrium through the submission of

demand schedules follows Bru and Vives [7]. Without information aggregation by the auctioneer, the

model would become similar to that of Minehart and Scotchmer [24], who showed that traders cannot

agree to disagree in a rational expectations equilibrium, i.e., an equilibrium may not exist, or if it

exists, it is a herding equilibrium where all traders choose the same action.
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trader i’s expected payoff evaluated at rn,i = r(pn, xδ,i) for any i, (ii) rn,i is consistent

with pn and xδ,i for any i, and (iii) the auctioneer delivers the orders d∗n,i = dn,i(p
∗
n),

and clears the market, i.e., S(p∗n) = m∗n/n, where m∗n =
∑n

i=1 d
∗
n,i. Random variables

(Xδ,i, P
∗
n ,M

∗
n) are denoted by upper case letters, while their realizations by lower case

letters (xδ,i, p
∗
n,m

∗
n).

2.2 Traders’ optimal strategy

We derive the optimal demand schedule of trader i as a threshold rule. When the

auctioneer chooses pn that satisfies S(pn) = m/n, it reveals that there are m buying

informed traders. Let pn(m) denote such a level of price. The optimal threshold rule

is given by

dn,i(pn(m)) =

 1 if xδ,i ≥ x̄n(m),

0 otherwise,

for m = 1, 2, . . . , n, where x̄n(m) denotes the threshold level for the private signal at

which a buying trader is indifferent between buying and not buying, given pn(m).

We solve for the optimal threshold x̄n as follows. Given pn(m) under the threshold

rule, and using functions λδ and Λδ, the likelihood ratios revealed by inaction (dn,i = 0)

and by buying (dn,i = 1), respectively, are written as λδ(x̄n(m)) and Λδ(x̄n(m)).

Consider a trader making a buying bid at price pn(1). If this bid is struck by the

auctioneer, this implies that the other n−1 informed traders do not bid at pn(1). Thus,

the threshold is determined by

1

pn(1)
− 1 = λδ(x̄n(1))n−1`δ(x̄n(1)).

Similarly, each buying trader knows that, if the bid is executed at pn(m), there are

m − 1 traders buying at pn(m) and n − m traders not buying at pn(m). Then, the
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threshold x̄n(m) is obtained by solving

1

pn(m)
− 1 = λδ(x̄n(m))n−mΛδ(x̄n(m))m−1`δ(x̄n(m)). (4)

Equation (4) is the key to the subsequent analysis. The right-hand side shows the

posterior private belief of a trader who receives signal xδ,i = x̄n(m) and is buying at

pn(m). Thus, this equation determines the threshold level of signal x̄n(m) for which

a trader is indifferent between buying and not-buying given pn(m). Note that this

equation implicitly determines x̄n(m) not only for integers but also any real number

m.

Given the threshold behavior shown above, we obtain aggregate demand D(pn(m))

by counting the number of informed traders with xδ,i ≥ x̄n(m) and dividing it by

n. As a convention for the case of m = 0, we exogenously set as pn(0) = 0.5 and

D(pn(0)) = D(pn(1)). If D(pn(1)) = 0 as a result of realized private signals, pn(0)

clears the market since D(pn(0)) = D(pn(1)) = S(pn(0)) = 0. If D(pn(1)) > 0, pn(0)

cannot clear the market.

With this setup, we obtain the following lemma stating that the aggregate demand

curve is upward sloping when n is sufficiently large. This property holds because the

more informed traders are buying the more signals in favor of H are revealed, and

hence, the more likely each informed trader is to buy.4

Lemma 1 There exists an no such that for any n > no, the threshold level of signal

x̄n(m) is strictly decreasing in m and the aggregate demand D(pn(m)) is non-decreasing

in m.
4A similar result was presented in Nirei [25]. However, this study differs from it in that it used a

Nash equilibrium, while the present study uses a rational expectations equilibrium. With the Nash

formulation, the previous study was not able to establish the existence of equilibrium with a finite

number of traders, which is accomplished in this study, as shown in Proposition 1.
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Proof: By taking the total derivative of the both sides of (4), we obtain

dx̄n
dm

=
− log (Λδ(x)/λδ(x))− {S ′(pn(m))pn(m)(1− pn(m))n}−1

(n−m)λ′δ(x)/λδ(x) + (m− 1)Λ′δ(x)/Λδ(x) + `′δ(x)/`δ(x)

∣∣∣∣
x=x̄n(m)

. (5)

The denominator is strictly negative, since λ′δ < 0, Λ′δ < 0, and `′δ < 0. In the

numerator, the first term is strictly positive, since λδ(x)/Λδ(x) > 1 for any x ∈ Σ

by (1). The second term in the numerator is negative. However, the term converges

to 0 as n → ∞, because the derivative of the supply function is bounded and 0.5 ≤

pn(m) ≤ p̄ < 1 for any m and n. Therefore, for all sufficiently large values of n, we

obtain that dx̄n/dm < 0.

Since D(pn(m)) is the number of traders with xδ,i ≥ x̄n(m) for m = 1, 2, . . . , n, di-

vided by n, and since D(pn(0)) = D(pn(1)), the decreasing x̄n(·) implies that D(pn(m))

is non-decreasing in m for any realization of (xδ,i)
n
i=1. 2

Lemma 1 indicates the presence of strategic complementarity in informed traders’

buying decisions, as a higher price indicates that there are more informed traders who

receive high signals. The mechanism in which demand feeds on itself is reminiscent

of Bulow and Klemperer [8]’s “rational frenzies.” Our model differs in that traders

with private signals only observe an equilibrium price, whereas in their model, traders

observe a series of auction prices through which private valuations are revealed sequen-

tially.

The number of informed traders n needs to be large in order to obtain the up-

ward sloping demand curve in our model. When n is small, the increment in price

pn(m+ 1)/pn(m) caused by an increase in demand becomes substantial due to limited

supply, thus leading to a higher purchasing cost. For a small enough n, this increased

purchasing cost overwhelms the effect of signal revealed by the increase in demand,

leading to a downward sloping demand curve. Thus, in what follows we concentrate

on the case where n is greater than no.
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With the upward sloping demand function, we obtain the existence of equilibrium

in a finite economy as follows.

Proposition 1 For any n > no, there exists an equilibrium outcome (p∗n,m
∗
n) for each

realization of (xδ,i)
n
i=1.

Proof: We define the aggregate reaction function as a mapping from the number of

buying traders m to the number of buying traders determined by traders’ choices given

pn(m) and their private signals. Specifically, the aggregate reaction function is given

by Γ : M 7→ M, where M = {0, 1, 2, . . . , n}, for each realization of (xδ,i)
n
i=1 such

that Γ(m) ≡ D(pn(m))n for any m ∈ M. Since Γ is a non-decreasing mapping of a

finite discrete set M onto itself, there exists a non-empty closed set of fixed points of

Γ as implied by Tarski’s fixed point theorem. Since S(pn(m)) = m/n, a fixed point

m∗ of Γ satisfies D(pn(m∗)) = S(pn(m∗)). Thus, we establish an equilibrium price as

p∗n = pn(m∗). 2

In this economy, multiple equilibria may exist for each realization of (xδ,i)
n
i=1. We

focus on the case where the auctioneer selects the minimum number of buying traders,

m∗n, among possible equilibria for each (xδ,i)
n
i=1. This assumption that the auctioneer

selects the minimum number of buying traders means that we exclude fluctuations that

arise purely from informational coordination such as in sunspot equilibria. Even with

this assumption, we can show that the equilibrium price, p∗n, shows large fluctuations.

Note that this equilibrium selection uniquely maps each realization of (xδ,i)
n
i=1 to m∗n.

Thus, M∗
n is a random variable whose probability distribution is determined by the

probability distribution of (Xδ,i)
n
i=1 and the equilibrium selection mapping.
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3 Analytical derivation of the power law

In this section, we characterize the minimum equilibrium aggregate trading volume M∗
n

and show that it follows a power law distribution. The power law distribution for M∗
n

implies a fat tail and large volatility for the trading volume. Since the asset price in

this model is determined by the equilibrium condition S(p∗n) = m∗n/n, the power law

for the trading volume also implies a fat-tailed distribution of the equilibrium price P ∗n .

Let us consider a counting process Yo(x) ≡
∑n

i=1 IXδ,i≥x, where I is an indicator

function: I = 1 if Xδ,i ≥ x and I = 0 otherwise. Xδ,i follows a probability density func-

tion fHδ . Lemma 1 states that the threshold x̄n(m) is decreasing in m. Thus, Yo(x̄n(m))

is the number of buying traders at price pn(m), and Yo(x̄n(m)) is non-decreasing in

m. Then, equilibrium outcome m∗n given signal profile (xδ,i)
n
i=1 is equivalent to the

minimum m such that Yo(x̄n(m)) = m given (xδ,i)
n
i=1.

Define a change of variable as t = x̄−1
n (x) − 1. Note that t corresponds to m − 1

for t = 0, 1, . . . , n− 1. Since x̄n(m) is monotone in m for sufficiently large n, f̃δ,n(t) ≡

fHδ (x̄n(t+1))|x̄′n(t+1)| is a probability density function of a signal defined over t. Now

we transform the counting process Yo(x) to Y (t), satisfying Yo(x = x̄n(m)) = Y (t =

m − 1) for m = 1, 2, . . . , n. Then, M∗
n can be regarded as the first passage time for

Y (t) = t.

When t increases from t to t+dt, a trader who chooses to buy before t continues to

buy at t+dt, whereas a trader who chooses not to buy before t might switch to buying at

t+dt. The conditional probability of a non-buying trader switching to buying between t

and t+dt for a small dt is equal to qδ,n(t)dt ≡ f̃δ,n(t)dt/FH
δ (x̄n(t+1)). Thus, the number

of traders who buy between t and t+ dt for the first time, conditional on Y (t), follows

a binomial distribution with population parameter n−Y (t) and probability parameter

qδ,n(t)dt. The distribution of Y (0) follows a binomial distribution with population n
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and probability qoδ,n ≡ 1 − FH
δ (x̄n(1)). This completes the definition of the stochastic

process Y (t) for t ≥ 0.

Let φδ,n(t)dt denote the mean of Y (t + dt) − Y (t) for a small dt. Thus, φδ,n(t) ≡

qδ,n(t)(n− Y (t)). For a finite Y (t), Y (t + dt)− Y (t) asymptotically follows a Poisson

distribution with mean φδ,n(t) as n→∞. Hence, for sufficiently large n, Y (t) asymp-

totically follows a Poisson process with time-dependent intensity φδ,n(t). The following

lemma characterizes an asymptotic behavior of the intensity function φδ,n as n→∞.

Lemma 2 As n→∞, Y (t) asymptotically follows a Poisson process with intensity:

lim
n→∞

log `δ(x̄n(t+ 1))

`δ(x̄n(t+ 1))− 1
. (6)

Proof: First, we show that x̄n(t)→ Σ̄ as n→∞. Equation (4) is rewritten as:

λδ(x̄n(t))n =

(
1

pn(t)
− 1

)(
λδ(x̄n(t))

Λδ(x̄n(t))

)t
Λδ(x̄n(t))

`δ(x̄n(t))
.

The right-hand side is bounded for any n. Hence, λδ(x̄n(t)) → 1 as n → ∞. This

implies that x̄n(t)→ Σ̄ as n→∞. Next, we transform φδ,∞ ≡ plimn→∞ φδ,n using (2),

(3), and (5).

φδ,∞(t) = plim
n→∞

f̃δ,n(t)

FH
δ (x̄n(t+ 1))

(n− Y (t)) = plim
n→∞

fHδ (x̄n(t+ 1))|x̄′n(t+ 1)|
FH
δ (x̄n(t+ 1))

(n− Y (t))

= plim
n→∞

(n− Y (t))
fHδ (x)

FH
δ (x)

log (Λδ(x)/λδ(x)) + {S ′(pn(t+ 1))pn(t+ 1)(1− pn(t+ 1))n}−1

(n− t− 1)λ′δ(x)/λδ(x) + tΛ′δ(x)/Λδ(x) + `′δ(x)/`δ(x)

∣∣∣∣
x=x̄n(t+1)

= plim
n→∞

(
1− Y (t)

n

)
log(Λδ(x)/λδ(x)) + {S ′(pn(t+ 1))pn(t+ 1)(1− pn(t+ 1))n}−1(

1− t+1
n

) (
`δ(x)
λδ(x)

− 1
)

+
FHδ (x)

nfHδ (x)

(
tΛ′
δ(x)

Λδ(x)
+

`′δ(x)

`δ(x)

)
∣∣∣∣∣∣
x=x̄n(t+1)

(7)

We examine the large fraction in (7). Note that `δ and `′δ are bounded. Since

Λδ(x) ∼ `δ(x) as x → Σ̄, and since x̄n(t + 1) → Σ̄ as n → ∞, limn→∞ Λ′δ(x̄n(t + 1))
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is also bounded. Moreover, fHδ (x) is strictly positive for any x ∈ Σ. Thus, the second

term in the denominator of (7) vanishes as n→∞.

The second term in the numerator of (7) also converges to 0 as n→∞, since S ′ is

bounded and pn ∈ [0.5, p̄]. Finally, log(Λδ(x)/λδ(x)) in the first term in the numerator

of (7) and `δ(x)/λδ(x) − 1 in the first term in the denominator of (7) are bounded

away from zero. Thus, φδ,∞(t) is bounded. This implies that the asymptotic variance

of Y (t + dt) − Y (t), limn→∞(n − Y (t))(1 − qδ,n(t)dt)qδ,n(t)dt, is also bounded. Hence

as n→∞, Y (t)/n converges in the L2-norm, and thus in probability, to 0.

Applying this result to (7), we obtain that:

φδ,∞(t) = plim
n→∞

log Λδ(x̄n(t+ 1))− log λδ(x̄n(t+ 1))

`δ(x̄n(t+ 1))/λδ(x̄n(t+ 1))− 1
.

Noting that x̄n(t + 1) → Σ̄ as n → ∞ as well as that Λ(x) ∼ `(x) and λ(x) → 1 as

x→ Σ̄, we obtain the expression (6) for φδ,∞(t). 2

The likelihood function `δ(·) is restricted by supx∈Σ |`δ(x) − 1| < δ. It is evident

from L’Hôpital’s rule that (log `δ(x))/(`δ(x) − 1) uniformly converges to 1 as δ → 0.

Thus, Y (t) asymptotically follows the Poisson process with intensity 1 as δ → 0. Using

this, we will show that the first passage time of Y (t) converges in distribution to that

of the Poisson process with intensity 1 as δ → 0.

We focus on the first passage time conditional on Y (0) = c for some positive integer

c. The initial condition implies Yo(x̄n(1)) = c, namely that there are c traders who

receive private information greater than x̄n(1). As n→∞, Y (t) asymptotically follows

a Poisson process with intensity φδ,n(t), which starts at Y (0) = c. Let τφδ,n(·) denote

the first passage time of Y (t) reaching t. Then, τφδ,n(·) is also the first passage time of

Y (t) − Y (0) reaching t − c. Let us define N(t) as the Poisson process with constant

intensity 1 and N(0) = 0. Then, τ1 denotes the first passage time of N(t) reaching

t− c. An inhomogeneous Poisson process with intensity φδ,n(t) can be transformed by
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a change of time to a homogeneous Poisson process as N(
∫ t

0
φδ,n(s)ds). Thus, the first

passage time we consider is

τφδ,n(·) ≡ inf

{
t ≥ 0 | N

(∫ t

0

φδ,n(s)ds

)
≤ t− c

}
where inf ∅ ≡ ∞.

We consider a vanishingly small δ, which restricts supx∈Σ |`δ(x) − 1|. The small δ

implies that signal Xδ,i is close to a pure noise. This case occurs, for example, in a very

high frequency trading in which the information content traders obtain from signals

during a trading period is quite small. With this setup, the following lemma establishes

that the first passage time of the inhomogeneous Poisson process Y (t) converges in

distribution to the first passage time of the standard Poisson process N(t).

Lemma 3 As n → ∞ and δ → 0 simultaneously, τφδ,n(·) converges in distribution to

τ1.

Proof: Since supx∈Σ |`δ(x) − 1| < δ, `δ(·) uniformly converges to 1 as δ → 0. Also,

1 ≤ (log `δ(x))/(`δ(x) − 1) < −(log(1 − δ))/δ. Thus, applying L’Hôpital’s rule,

(log `δ(x))/(`δ(x)− 1) converges to 1 as δ → 0.

Under this setup, we show that the random variable τφδ,n(·) defined over [0,∞]

converges in distribution to τ1 as a pair (n, δ) tends to (∞, 0). We prove this by showing

that the Laplace transform of τφδ,n(·) converges to that of τ1 as n → ∞ and δ → 0

simultaneously. In (7), we observe that φδ,n(t) contains a stochastic term Y (t)/n, which

converges in probability to 0 as n→∞. That is, for a constant y, the probability for

the events Y (t)/n > y becomes arbitrarily small for large n. Thus, the contribution of

such events to the Laplace transform of τφδ,n(·) is arbitrarily small for large n. Moreover,

the intensity φδ,n(t) can be set arbitrarily close to (log `δ(x̄n(t+ 1)))/(`δ(x̄n(t+ 1))− 1)

for sufficiently large n. Thus, 1 ≤ φδ,n(t) < −(log(1− δ))/δ for large n. Hence for large
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n, φδ,n(t) can be set arbitrarily close to 1 as δ → 0. Therefore, it is sufficient to show

that for any β > 0,

lim
δ→0

E
[
exp(−βτφδ,n(·))

]
= E [exp(−βτ1)] . (8)

Note that e−βτ is set at 0 for the events where τ =∞ by convention.

Since an inhomogeneous Poisson process can be transformed to a homogeneous

Poisson process with a change of time, inequalities τ1 ≤ τφδ,n(·) ≤ τ−(log(1−δ))/δ hold.

Thus, in order to establish (8), it is sufficient to show that E[exp(−βτψ)] is continuous

with respect to ψ. We also note that

τψ = inf{t ≥ 0 | N(ψt) ≤ t− c}

= inf{t ≥ 0 | t−N(ψt) ≥ c}

=
1

ψ
inf

{
t ≥ 0 | t

ψ
−N(t) ≥ c

}
=

1

ψ
τ̃ψ

where τ̃ψ ≡ inf {t ≥ 0 | t/ψ −N(t) ≥ c}.

Let ζ be a constant in (0, 1). Consider a stochastic differential equation:

dZ(t) = −ζZ(t−){dN(t)− dt}, Z(0) = 1.

The solution of the stochastic differential equation is a martingale and satisfies

Z(t) = eζt(1− ζ)N(t) =

(
1

1− ζ

) t
ψ
−N(t)

exp

{(
ζ +

log(1− ζ)

ψ

)
t

}
.

Now, for fixed β and ψ, there exists a unique ζ that satisfies an equation

ζψ + log(1− ζ) = −β.
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Let ζ(β, ψ) denote the unique solution. Note that ζ(β, ψ) is continuous and monoton-

ically increasing with respect to both β and ψ. Then, Z is written as

Z(t) =

(
1

1− ζ(β, ψ)

) t
ψ
−N(t)

exp

(
−β
ψ
t

)
.

Z(t) is positive and takes a value less than or equal to {1− ζ(β, ψ)}−c at and before

the stopping time τ̃ψ. Namely, Z(t) is bounded. Therefore, E[Z(τ̃ψ)] = 1 holds by the

optional sampling theorem. (Note that Z = 0 for the events where τ̃ψ =∞.) Moreover,

noting that N(t) does not jump at the point of time τ̃ψ, we obtain that

Z(τ̃ψ) =

(
1

1− ζ(β, ψ)

)c
exp

(
−β
ψ
τ̃ψ

)
,

for both cases of τ̃ψ <∞ and τ̃ψ =∞. Thus,

E[exp(−βτψ)] = E
[
exp

(
−β
ψ
τ̃ψ

)]
= {1− ζ(β, ψ)}c.

Since ζ(β, ψ) is continuous with respect to ψ, this completes the proof. 2

We had shown that the equilibrium number of buying traders M∗
n has the same

distribution as the stopping time τφδ,n of a counting process Y (t). Lemma 2 showed

that Y (t) asymptotically follows a Poisson process as n → ∞. Lemma 3 then shows

that τφδ,n converges in distribution to τ1 for large n as δ → 0, i.e., when a large number

of traders receive signals that contain little information.

We can further derive the distribution function of τ1 explicitly, using the fact that

τ1 has the same distribution function as the sum of a branching process. The stopping

time τ1 follows the same distribution as M∗
n conditional on that there are Y (0) = c

traders who receive private information xδ,i ≥ x̄n(1). Hence, we obtain the conditional

distribution of the equilibrium number of buying traders, M∗
n | Y (0), for sufficiently

large n and small δ.
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Proposition 2 As n → ∞ and δ → 0 simultaneously, M∗
n conditional on Y (0) = c

asymptotically follows:

Pr (M∗
n = m | Y (0) = c) = (c/m)e−mmm−c/(m− c)!, m = c, c+ 1, . . .

Moreover, the tail of the asymptotic distribution follows a power law with exponent 0.5,

i.e., Pr(M∗
n > m) ∝ m−0.5 for sufficiently large values of m.

Proof: Consider the Poisson process N(t) with intensity 1 and N(0) = 0. The first

passage time τ1 of N(t) reaching t − c must be greater than or equal to c. Now

we introduce a process b with b(0) = c. During the time interval c, the increment

N(c) − N(0), denoted as b(1), follows a Poisson distribution with mean c. Since a

Poisson random variable is infinitely divisible, a Poisson random variable with mean c

is equivalent to c-fold convolution of the Poisson with mean 1. Thus, we can regard

b(1) as the sum of “children” borne by c = b(0) “parents,” where each parent bears a

number of children following the Poisson with mean 1. If b(1) = 0, the process b stops,

and the first passage time is b(0) = c. If b(1) > 0, the first passage time is greater

than or equal to b(0) + b(1). During the time interval (b(0), b(0) + b(1)], new increment

b(2) ≡ N(b(0) + b(1))−N(b(0)) follows the Poisson distribution with mean b(1), which

is equivalent to b(1)-fold convolution of the Poisson with mean 1 and regarded as the

number of children borne by b(1) parents (note that the increment b(1) of a Poisson

process is always an integer). This process b(u) continues for u = 1, 2, . . . , U , where

U denotes the stopping time at which b(U) is equal to 0 for the first time. Thus, the

first passage time τ1 is equal to
∑U

u=0 b(u), the total number of population generated

in the so-called Poisson branching process b(u) in which each parent bears a number

of children according to the Poisson distribution with mean 1.

It is known that the sum of the Poisson branching process, cumulated over time

until the process stops, follows a Borel-Tanner distribution (Kingman [19]). When
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the Poisson mean of the branching process b(u) is φ > 0 generally, the Borel-Tanner

distribution is written as:

Pr

(
U∑
u=0

b(u) = m | b(0) = c

)
=

c

m

e−φm(φm)m−c

(m− c)!
, m = c, c+ 1, . . . (9)

∝ e−(φ−1−log φ)mm−1.5, as m→∞. (10)

The tail characterization in (10) is obtained by applying Stirling’s formula to (9). Since

τ1 follows the same distribution as the sum of the Poisson branching process with mean

1, it follows (9) and (10) with φ = 1. 2

Proposition 2 shows that the distribution of M∗
n conditional on Y (0) = c has a

power-law tail. This implies that, given there are c traders who receive extremely

favorable private signals, their buying actions may trigger a stochastic herd, and the

size of the herd follows a fat-tailed distribution. We can pin down the distribution of

Y (0) under a certain condition, in which case we can explicitly derive an unconditional

asymptotic distribution of M∗
n. For finite n, Y (0) follows a binomial distribution with

population n and probability qoδ,n ≡ 1 − FH
δ (x̄n(1)). The behavior of the asymptotic

mean φoδ ≡ limn→∞ nq
o
δ,n depends on specification of signals Xδ,i. If the asymptotic

mean is finite, Y (0) follows a Poisson distribution with mean φoδ asymptotically as

n→∞. We obtain the unconditional distribution explicitly in this case as follows.

Proposition 3 Suppose that n(1− FH
δ (x̄n(1))) converges to a positive constant φoδ as

n → ∞. Then for sufficiently small δ and large n, the distribution function of M∗
n is

arbitrarily close to:

Pr(M∗
n = m) =

φoδe
−m−φoδ

m!
(m+ φoδ)

m−1 , m = 0, 1, . . . . (11)

Moreover, M∗
n has a power-law tail distribution with exponent 0.5.
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Proof: The unconditional distribution is derived by combining the distribution (9) with

φ = 1 and the Poisson distribution with mean φoδ for Y (0) and by using the binomial

theorem as follows.

m∑
c=0

Pr (M∗ = m | Y (0) = c) Pr(Y (0) = c) =
m∑
c=0

c

m

e−mmm−c

(m− c)!
(φoδ)

c

c!
e−φ

o
δ

=
φoδe

−m−φoδ

m!

m∑
c=0

(m− 1)!

(m− c)!(c− 1)!
mm−c(φoδ)

c−1

=
φoδe

−m−φoδ

m!
(m+ φoδ)

m−1, m = 0, 1, . . . .

Thus, we obtain (11). Applying Stirling’s formula, we obtain that the tail follows a

power law with exponent 0.5. 2

Propositions 2 and 3 indicate the presence of a power-law tail for the equilibrium

number of buying traders. The power law implies a large variance of M∗
n. In general, a

power law with exponent α implies that any k-th moment for k ≥ α is infinite. Thus,

with exponent 0.5, M∗
n does not have a finite variance or mean.

The power law also implies that the variance of the fraction of buying traders, M∗
n/n,

can be quite large. Note that M∗
n is bounded by n in a market with a finite number of

informed traders. By integrating (M∗
n/n)2 up toM∗

n = n with a power-law tail exponent

0.5, we find that the variance of M∗/n decreases as n−0.5 when n becomes large. This

contrasts with the case when the traders act independently. If traders’ choices (dn,i)
n
i=1

were independent, the central limit theorem predicts that M∗
n/n would asymptotically

follow a normal distribution, whose tail is thin and variance declines as fast as n−1.

The variance of M∗/n differs by factor
√
n between our model and the model with

independent choices. This signifies the effect of stochastic herding that magnifies the

small fluctuations in the average of signals Xδ,i. Even though a magnification effect

occurs whenever traders’ actions are correlated, it requires a particular structure in
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correlation among traders for the magnification effect to cause the variance to decline

more slowly than n−1. The magnification effect in our model is analogous to a long

memory process, in which a large deviation from the long-run mean is caused by long-

range autocorrelation. In our static model, the long-range correlation of traders’ actions

is captured by the asymptotic martingale process Y (t) when δ → 0. The power law

exponent 0.5 obtained in our model is closely related to the same exponent in the Inverse

Gaussian distribution that characterizes the first passage time of a martingale. An

economic meaning of Y (t) being a martingale in our model is that the mean number of

traders induced to buy by a buying trader is 1. We will argue that such an environment

is analogous to the indeterminate equilibrium that occurs in Keynes’s beauty contest,

in which the average action of a single trader responds one-to-one to the average actions

of the entire group.

A power law of M∗
n implies that equilibrium trading volumes can occur at any order

of magnitude. This wide range of equilibrium aggregate outcomes can be seen in the

economic environment that gives rise to indeterminacy of equilibria. Indeterminacy in

signal inference games is best exemplified by Keynes’s beauty contest, in which voters

care more about who is selected by other voters rather than who is actually beautiful,

such that any candidate can win, regardless of inherent quality. A property of our

model, similar to that of Keynes’s beauty contest, can be seen from optimal threshold

condition (4). This condition reduces to the simple form (1−µ) log λn(x̄)+µ log Λn(x̄) =

0, where µ ≡ m/n, if we take the limit as n approaches infinity while keeping µ

unchanged. The condition indicates that the log of the geometric average of λ and Λ

evaluated at x̄, which can be regarded as a summary statistic for information on the

true state revealed by traders’ actions, does not change even when µ takes different

values in equilibrium.
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To explain why this happens, suppose that a trader switches from not-buying to

buying. This increases µ, which leads to a decline in the geometric average of λ and Λ

that traders observe, such that the optimal threshold declines. This in turn increases

the average likelihood ratio, because each trader learns that the signals received by

non-buying traders must have been below the threshold level. As a result, the impact

of a change in µ on the geometric average of λ and Λ is exactly canceled out, which

makes it possible that any value of µ satisfies the above reduced condition. The setup

of our model, with a finite number of traders and discrete actions, prevents this type

of local indeterminacy from occurring. However, the indeterminacy described above

is useful to understand the key environment of our model that generates the large

fluctuations of the aggregate trading volume.

It is important to note that the ability of the above mechanism to generate inde-

terminacy depends on the information structure adopted. Specifically, if there exists

substantial heterogeneity in the information structure as to who observes whose ac-

tions, a trader observed by many traders would provide a stronger herding trigger. A

useful example is Banerjee’s sequential herding model, in which agents observe only the

actions of those agents who move before them. Under this information structure, it is

possible that the first mover’s action cascades to all agents, with private signals of most

agents remaining unrevealed. An important implication of Banerjee’s model is that in-

termediate outcomes between “herding” and “no herding” do not occur. This contrasts

sharply with our result that any degree of herding can be realized in equilibrium. The

difference arises from the information structure, which is assumed symmetric across

traders in our model.

Propositions 2 and 3 claim not only that various levels of aggregate trading volumes

M∗
n are possible, but also that the distribution ofM∗

n has a particular regularity signified
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by a power law. The power law for M∗
n implies a particular fat-tailed distribution of

the equilibrium price P ∗n . In the next section, we explore through numerical analysis

how the particular distribution of the price generated by our model can account for

stock price movements observed in reality.

4 Numerical results on volume and return distri-

butions

In this section, we conduct numerical simulations of the model with a finite number

of informed traders n. The purpose of this simulation exercise is to numerically show

that the probability distribution of the number of buying traders M∗
n has a power

law tail, which was shown in the previous section as an asymptotic property when n

tends to infinity. Moreover, we will look at fluctuations in equilibrium asset returns

logP ∗n − log p(0) to make sure that the return distribution exhibits a fat tail, and it

matches well with the return distribution observed in actual data.

An important facet of the model to be specified is the supply function S(p), which

determines how the fluctuation of volumes is translated to the fluctuation of returns.

In our model, where informed traders’ demands are absorbed by uninformed traders’

supply, the elasticity of supply function determines the impact of demand shifts on the

returns. The relation between an exogenous shift in trading volume and a resulting

shift in asset price is often called a price impact function. We adopt a square-root spec-

ification of the price impact function. Namely, we specify the inverse supply schedule

of uninformed traders as p(m) = p(0) + p(0)(m/n)γ, for m = 1, 2, . . . , n, with γ = 0.5.

A micro-foundation for the square-root specification is provided by Gabaix et al. [13]

in a Barra model of uninformed traders who have a mean-variance preference and zero
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bargaining power against informed traders. The square-root specification is commonly

used for the price impact (e.g., Hasbrouck and Seppi [16]), and its parameter specifica-

tion, γ = 0.5, falls within the empirically identified range of the price impact by Lillo

et al. [21].

Other parts of the model are specified as follows. The distributions of signal, F s,

are specified as normal distributions. The mean of FH and FL are set at µH = 1 and

µL = 0, respectively. FH and FL have a common standard deviation σ. We set σ

at 25 or 50. This large standard deviation relative to the difference in mean of one

captures the situation where the informativeness of signal Xi is small. We set the

number of informed traders n at a finite but large value between 500 and 4000. Under

these parameter values, the optimal threshold function x̄n(·) is computed. Using the

threshold function, we conduct Monte Carlo simulations. A profile of private signals

(xi)
n
i=1 is randomly drawn 100,000 times, and m∗n and p∗n are computed for each draw.

Figure 1 plots the complementary cumulative distribution of M∗
n/n for various pa-

rameter values of n and σ. The complementary distribution Pr(M∗
n > m) is cumulated

from above, and is thus 0 at m = n. The distribution is plotted in log-log scale. Thus,

a linear line indicates a power law Pr(M∗
n > m) ∝ m−α, where the slope of the linear

line α is the exponent of the power law. The simulated distributions appear linear for

a wide range of M∗
n. This conforms to the model prediction that M∗

n follows a power

law distribution. The simulated distribution decays fast when M∗
n/n is close to 1, due

to the finiteness of n.

The asymptotic results in Propositions 2 and 3 predicted the exponent of power

law α to be 0.5. As shown in the left panel of Figure 1, we observe that the power

law exponent of the simulated M∗
n is roughly equal to 0.5 when n = 1000 and σ = 25.

We check the robustness of the result by simulating the model with a larger number of
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Figure 1: Left: Simulated complementary cumulative distributions of the minimum

equilibrium number of buying traders M∗
n. n is the number of traders, σ is the standard

deviation of the private information, and µH−µL denotes the difference of the mean of

the private information between FH and FL. Right: Simulated distributions of returns

logP ∗n − log p(0).
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traders and lower signal informativeness. In order to set a lower level of informativeness,

we lower the mean difference µH − µL from 1 to 0.7 or 0.5 with σ fixed. In Figure 1,

we observe that a similar slope α = 0.5 for the power law holds for the cases with

n = 2000 (dashed line) and 4000 (dotted line) when the informativeness of signal is

lower. In the simulations under other parameter sets, however, we note that α can take

larger values. This can be seen in the plot for a larger σ (circle-line) and a smaller n

(square-line). This deviation in the exponent might result from the fact that the finite

truncation occurs at a relatively small value of m∗n in these cases. It is also possible that

the state-dependence of the intensity φδ,n is strong enough to cause a large deviation

from the predicted exponent α = 0.5. Sornette [30] showed that in these types of

“criticality” models, the power law exponent increases by 1 when the parameter φδ,n

fluctuates around the criticality value, 1.

Our model also determines price p∗n for each equilibrium number of buying traders

m∗n. We interpret the shifts in log price, log p(m∗n) − log p(0), as stock returns. To

investigate the fit of the model to observed distributions of stock returns, it must be

extended such that informed traders herd on the sell side as well as on the buy side.

Here, we simply assume that trading sessions alternate between two cases when the

informed traders can buy and when they can sell.5 When the informed traders herd

on the supply side, m∗n is interpreted as the number of selling traders, and log p(m∗n)−

log p(0) is interpreted as an associated negative return. We plot the distributions of the

simulated returns in the right panel of Figure 1. The density is logarithmically scaled,

and thus, a linear decline indicates an exponential distribution. Note that the returns

5It would be more natural if we allow the informed traders to choose between buying, selling, and

inaction simultaneously. We conjecture that our results will also hold in such an extended model.

However, such an extension would lead to complications that involve various cases of Y (0) (how many

traders respond initially by buying or selling) without generating additional insights.
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are normalized by the standard deviations of logP ∗n − log p(0). The normalized returns

still span a wide range from -10 to 10. Thus, the plots clearly indicate the presence of

fat tails in the simulated returns distributions.

The simulated distribution of returns is compared to the observed distribution in

Figure 2. The observed distribution is generated using daily returns data of TOPIX

stock price index in the Tokyo Stock Exchange from 1998 to 2010. We define the

daily return as the log difference from the opening price to the closing price. We use

the opening-closing difference rather than the return in a business day in order to

homogenize the time horizon of each observed return. The simulated distribution is

generated under n = 1000. The standard deviation σ of the signal is set to 48.5, at

which value the density estimate of simulated returns at 0 matches with that of the

observed distribution. The other parameters are set as before: γ = 0.5, µH = 1, and

µL = 0.

In the left panel of Figure 2, the returns distributions are plotted in semi-log scale.

The plot shows that the simulated distribution traces the observed distribution rather

well, especially in the left tail. In the same panel, we plot the standard normal density

by a dotted line. Even though the simulated and observed distributions are normalized

by their standard deviations, both distributions deviate substantialy from the normal

distribution in the tails at more than three standard deviations away from the mean.

Note that we used σ as a free parameter in the simulation to match the observed

density at 0, but we did not use it to match the tail distribution. This indicates that

our model is capable of generating the fat tail of observed returns better than models

that generate the normal distribution.

To further investigate the match between the simulated and observed distributions,

we show a Q-Q plot in the right panel of Figure 2. In the Q-Q plot, each quantile of
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Figure 2: Distributions of TOPIX daily returns and simulated returns logP ∗n− log p(0).

Left: Distributions plotted in semi-log scale, where returns are normalized by standard

deviations. Observed and model distributions are shown along with a standard normal

distribution. Right: Quantile-quantile (Q-Q) plot. Each circle represents a pair of

values, the simulated data value in the horizontal axis and the TOPIX data value

in the vertical axis, under which the two distributions in comparison have the same

fraction of the population.
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the TOPIX returns data is plotted against the same quantile of the simulated returns

data. Thus, the two distributions are identical if the Q-Q plot coincides with the 45

degree line, shown by a dashed line. Both quantiles are normalized by their standard

deviations. In Figure 2, the two quantiles follow the 45 degree line reasonably closely

overall, although the simulated quantiles somewhat overshoot the observed quantiles

in the region greater than 2.

5 Conclusion

This study analyzed aggregate fluctuations of trading volumes and prices that arise

from information inference behaviors among traders in financial markets. In a class

of herd behavior models in which each trader infers the private information of other

traders only by observing their actions, we found that the number of traders taking

the same action at equilibrium exhibits large volatility with a statistical regularity—a

power-law distribution. Furthermore, we showed that the model is capable of generat-

ing a fat-tailed distribution of asset returns. The simulated distribution of equilibrium

returns was demonstrated to match well with the distribution of observed stock returns.

The power-law distribution of trading volumes emerges when the information struc-

ture of traders is symmetric. Every trader receives a private signal containing the same

magnitude of informativeness regarding the true value of an asset, and every trader

observes the average action of all traders. In our model, an action by one trader is as

informative as inaction by another. When information is revealed by a trader’s buying

action, the inaction of other traders reveals their private information in favor of not

buying. Thus, each trader’s action is influenced by the average action, resulting in

a near-indeterminate equilibrium analogous to Keynes’s beauty contest. In this way,
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our information inference model provides an economic foundation for the criticality

condition that generates power-law fluctuations.

This study suggests several directions for extension. The present static model is

shown to match with the quantitative properties of unconditional fluctuations. The

natural next step would be to develop a dynamic model that accounts for the time-

series properties as pursued by, for example, Alfarano, et al. [1]. A dynamically ex-

tended model is presented in the working paper version of this study (Nirei [26]), which

generates a time-series pattern similar to Lee [20] for sudden shifts in stock prices. An-

other direction would be to extend the model by incorporating more realistic market

structures. Kamada and Miura [18] have taken a step in this direction by extending

this model to the case where both public and private signals exist and where informed

traders can take both buying and selling sides. We hope that our study provides a valu-

able step toward promoting subsequent research on fat-tailed distributions in financial

markets.
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