Beauty Contests and Fat Tails in Financial Markets

Makoto Nirei^{1,2} Koichiro Takaoka³ Tsutomu Watanabe⁴

¹Policy Research Institute, Ministry of Finance
 ²Institute of Innovation Research, Hitotsubashi University
 ³Faculty of Commerce and Management, Hitotsubashi University
 ⁴Faculty of Economics, University of Tokyo

SWET Hokkaido University August 8, 2015

Empirical literature on fat tails in finance

Stock returns follow a fat-tailed distribution

- Evident in the high-frequency domain (Mandelbrot 1963; Fama 1963)
- The tail regularity could span historical crashes (Jansen and de Vries, REStat 1991; Longin, JB 1996)
- Leptokurtic (4th moment greater than the normal)
- Trading volumes also show a fat tail (Gopikrishnan, Plerou, Gabaix, and Stanley 2000)
 - "It takes volume to move prices"

Fat tails of stock returns

S&P 500 index, 1 minute interval, 6 years coverage. Source: Mantegna and Stanley, 2000, Cambridge

Source: Mantegna and Stanley

Source: Bouchaud and Potters, 2000, Cambridge

Tail distributions

- Gaussian $\phi(x) \propto e^{-(x-\mu)^2/2\sigma^2}$
 - Parabola in a semi-log plot
- Exponential tail $\Pr(X > x) \propto e^{-\lambda x}$
 - Linear in a semi-log plot
- Power law tail $\Pr(X > x) \propto x^{-lpha}$
 - Linear in a log-log plot
 - \blacktriangleright Does not have a finite variance if $\alpha < 2$
 - ...nor a finite mean if $\alpha \leq 1$ (e.g. Cauchy)

Tail matters

Fat tail affects risks

- volatility
- option price
- value at risk
- Power-law tail suggests the same mechanism for price fluctuations, small and large
 - fractal, self-similar, scale-free
 - crash
 - high frequency data

Plan of the paper

- Develop a simultaneous-move rational-herding model of securities traders with private signal
- Derive a distribution of equilibrium aggregate actions
- Match with an empirical fat-tailed distributions of stock trading volumes and returns
- Provide an economic reason why the fat tail has to occur

Signal

- ► Two states of the economy: *H* (High) and *L* (Low)
- True state is H.
- Common prior belief Pr(H) = Pr(L) = 1/2
- Each informed trader receives private signal X_{δ,i} i.i.d. across i, which follows cdf F^s_δ in state s = H, L with common support Σ where sup Σ = Σ̄ < ∞. Also f^s_δ(x) > 0 for any x ∈ Σ.
- Likelihood ratio ℓ_δ = f^L_δ/f^H_δ is strictly decreasing, and satisfies max_{x∈Σ} |ℓ_δ(x) − 1| < δ</p>
- Define the following likelihoods

$$\lambda_{\delta}(x) \equiv \frac{\Pr(x_{\delta,i} < x \mid L)}{\Pr(x_{\delta,i} < x \mid H)} = \frac{F_{\delta}^{L}(x)}{F_{\delta}^{H}(x)}$$
$$\Lambda_{\delta}(x) \equiv \frac{\Pr(x_{\delta,i} \ge x \mid L)}{\Pr(x_{\delta,i} \ge x \mid H)} = \frac{1 - F_{\delta}^{L}(x)}{1 - F_{\delta}^{H}(x)}$$
$$\blacktriangleright \lambda_{\delta}(x) > \ell_{\delta}(x) > \Lambda_{\delta}(x) > 0; \quad \lambda_{\delta}'(x) < 0, \ \Lambda_{\delta}'(x) < 0$$

Market microstructure

- An asset that is worth 1 in H and 0 in L
- ▶ *n* informed traders decide to buy $(d_{n,i} = 1)$ or not $(d_{n,i} = 0)$.
- Each informed trader submits demand function $d_{n,i}(p)$.
- Trading volume is denoted by $m_n = \sum_{i=1}^n d_{n,i}$.
- Aggregate demand function $D(p) = \sum_{i=1}^{n} d_{n,i}(p)/n$
- Uninformed traders submit supply function S(p)
- $S(0.5) = 0, \; S' > 0, \; S(ar{\Sigma}) = ar{p} < 1$
- Auctioneer clears the market $D(p_n^*) = S(p_n^*)$
- $\operatorname{supp} P_n^* = [0.5, \bar{p}]$

Rational Expectations Equilibrium

For each realization of information profile $(x_{\delta,i})_{i=1}^n$, a rational expectations equilibrium consists of price p_n^* , trading volume m_n^* , demand functions $d_{n,i}(p)$, and posterior belief $r_{n,i}$ such that

- ► for any p, $d_{n,i}(p)$ maximizes i's expected payoff evaluated at $r_{n,i} = r(p_n, x_{\delta,i})$
- $r_{n,i}$ is consistent with p_n and $x_{\delta,i}$ for any i
- ▶ the auctioneer delivers the orders $d_{n,i}^* = d_{n,i}(p_n^*)$ and clears the market, $S(p_n^*) = m_n^*/n$, where $m_n^* = \sum_{i=1}^n d_{n,i}^*$

Informed trader's optimal behavior

- ► Trader *i* maximizes expected payoff: r_{n,i} p_n if buying and 0 otherwise.
- $p_n(m)$ denotes the price level such that $S(p_n) = m/n$
- *i*'s optimal threshold policy:

$$d_{n,i}(p_n(m)) = \begin{cases} 1 & \text{if } x_{\delta,i} \ge \bar{x}(m) \\ 0 & \text{otherwise} \end{cases}$$
(1)

where \bar{x} the threshold level of private signal at which *i* is indifferent between buying and not.

Threshold rule and revealed information

Given the threshold rule, the information revealed by "buy" and "not-buy" actions are $\lambda_{\delta}(\bar{x})$ and $\Lambda_{\delta}(\bar{x})$. When $p_n(m)$ realizes, the information revealed to a buying trader is:

$$\lambda_{\delta}(\bar{x}(m))^{n-m}\Lambda_{\delta}(\bar{x}(m))^{m-1}$$
(2)

The threshold is determined by:

$$\frac{1}{p_n(m)} - 1 = \lambda_\delta(\bar{x}(m))^{n-m} \Lambda_\delta(\bar{x}(m))^{m-1} \ell_\delta(\bar{x}(m))$$
(3)

Upward sloping aggregate demand function

- Lemma 1: For sufficiently large n, x̄(m) is strictly decreasing in m and D(p_n(m)) is non-decreasing in m.
- Proof:

$$\frac{d\bar{x}_n}{dm} = \left. \frac{-\log\left(\Lambda_{\delta}(x)/\lambda_{\delta}(x)\right) - \left\{S'(p_n(m))p_n(m)(1-p_n(m))n\right\}^{-1}}{(n-m)\lambda'_{\delta}(x)/\lambda_{\delta}(x) + (m-1)\Lambda'_{\delta}(x)/\Lambda_{\delta}(x) + \ell'_{\delta}(x)/\ell_{\delta}(x)} \right|_{x:t}$$

 $\text{Use } \lambda_{\delta}' < 0, \ \Lambda_{\delta}' < 0, \ \ell_{\delta}' < 0, \ \text{and} \ \lambda_{\delta}(x) > \Lambda_{\delta}(x).$

A higher price indicates that there are more traders who receive high signals → strategic complementarity

Existence of equilibrium

Proposition 1:

For sufficiently large *n*, there exists an equilibrium outcome (p_n^*, m_n^*) for each realization of $(x_{\delta,i})_{i=1}^n$.

Proof:

- Construct a reaction function m' = Γ(m) ≡ D(p_n(m))n: the number of traders with x_{δ,i} ≥ x̄(m).
- Γ is non-decreasing, and thus Tarski's fixed point theorem applies.
- Multiple equilibria may exist. We focus on the minimum equilibrium outcome m^{*}_n.

Minimum outcome m_n^* as a first passage time

- A counting process $Y_o(x) \equiv \sum_{i=1}^n I_{X_{\delta,i} \ge x}$, where $X_{\delta,i}$ follows density f_{δ}^H
- M_n^* is equivalent to the first passage time *m* such that $Y_o(\bar{x}_n(m)) = m$.
- Change of variable $t = \bar{x}_n^{-1}(x) 1$. (*t* corresponds to m 1 for t = 0, 1, ..., n 1.) Then, *t* follows $\tilde{f}_{\delta,n}(t) \equiv f_{\delta}^{H}(\bar{x}_n(t+1))|\bar{x}'_n(t+1)|$.
- ► Transform $Y_o(x)$ to Y(t), satisfying $Y_o(x = \bar{x}_n(m)) = Y(t = m 1)$.
- M_n^* is the first passage time for Y(t) = t.

Y(t) follows a Poisson process asymptotically as $n o \infty$

- ► The number of traders who switch to buy during (t, t + dt) follows a binomial distribution with population n Y(t) and probability $q_{\delta,n}(t)dt \equiv \tilde{f}_{\delta,n}(t)dt/F_{\delta}^{H}(\bar{x}_{n}(t+1))$
- Y(0) follows a binomial distribution with population n and probability q^o_{δ,n} ≡ 1 − F^H_δ(x̄_n(1)).
- Lemma 2: As n→∞, Y(t) asymptotically follows a Poisson process with intensity:

$$\lim_{n\to\infty}\frac{\log\ell_{\delta}(\bar{x}_n(t+1))}{\ell_{\delta}(\bar{x}_n(t+1))-1}$$

• $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.

- $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.
- Suppose that Y(0) = c. Then, $\tau_{\phi_{\delta,n}(\cdot)}$ is the first passage time of Y(t) Y(0) starting 0 and reaching t c.

- $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.
- Suppose that Y(0) = c. Then, $\tau_{\phi_{\delta,n}(\cdot)}$ is the first passage time of Y(t) Y(0) starting 0 and reaching t c.
- ► N(t) denotes the Poisson process with intensity 1. \(\tau_1\) denotes the first passage time of N(t) reaching t.

- $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.
- Suppose that Y(0) = c. Then, $\tau_{\phi_{\delta,n}(\cdot)}$ is the first passage time of Y(t) Y(0) starting 0 and reaching t c.
- ► N(t) denotes the Poisson process with intensity 1. \(\tau_1\) denotes the first passage time of N(t) reaching t.
- Change of time: Y(t) is transformed to $N(\int_0^t \phi_{\delta,n}(s)ds)$

- $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.
- Suppose that Y(0) = c. Then, $\tau_{\phi_{\delta,n}(\cdot)}$ is the first passage time of Y(t) Y(0) starting 0 and reaching t c.
- ► N(t) denotes the Poisson process with intensity 1. \(\tau_1\) denotes the first passage time of N(t) reaching t.
- Change of time: Y(t) is transformed to $N(\int_0^t \phi_{\delta,n}(s)ds)$

$$\tau_{\phi_{\delta,n}(\cdot)} \equiv \inf\left\{t \ge 0 \mid N\left(\int_0^t \phi_{\delta,n}(s)ds\right) \le t - c\right\}$$

where inf $\equiv\infty$

►

- $\tau_{\phi_{\delta,n}(\cdot)}$ denotes the first passage time of the Poisson process Y(t) with intensity function $\phi_{\delta,n}(t)$ reaching t.
- Suppose that Y(0) = c. Then, $\tau_{\phi_{\delta,n}(\cdot)}$ is the first passage time of Y(t) Y(0) starting 0 and reaching t c.
- ► N(t) denotes the Poisson process with intensity 1. \(\tau_1\) denotes the first passage time of N(t) reaching t.
- Change of time: Y(t) is transformed to $N(\int_0^t \phi_{\delta,n}(s)ds)$

$$\tau_{\phi_{\delta,n}(\cdot)} \equiv \inf \left\{ t \ge 0 \mid N\left(\int_0^t \phi_{\delta,n}(s) ds\right) \le t - c \right\}$$

where inf $\equiv \infty$

• $\sup_{x \in \Sigma} |\ell_{\delta}(x) - 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large *n*
- Y(t)/n converges in probability to 0 as $n \to \infty$.

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n
- Y(t)/n converges in probability to 0 as $n \to \infty$.
- We show $\lim_{\delta \to 0} \mathbb{E}\left[\exp(-\beta \tau_{\phi_{\delta,n}}(\cdot))\right] = \mathbb{E}\left[\exp(-\beta \tau_1)\right]$ for any $\beta > 0$

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n
- Y(t)/n converges in probability to 0 as $n \to \infty$.
- We show $\lim_{\delta\to 0} \mathbb{E}\left[\exp(-\beta\tau_{\phi_{\delta,n}}(\cdot))\right] = \mathbb{E}\left[\exp(-\beta\tau_1)\right]$ for any $\beta > 0$
- ► $\tau_1 \leq \tau_{\phi_{\delta,n}(\cdot)} \leq \tau_{-(\log(1-\delta))/\delta}$. So, sufficient to show that $\mathbb{E}[\exp(-\beta \tau_{\psi})]$ is continuous with respect to ψ .

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n
- Y(t)/n converges in probability to 0 as $n \to \infty$.
- We show $\lim_{\delta\to 0} \mathbb{E}\left[\exp(-\beta\tau_{\phi_{\delta,n}}(\cdot))\right] = \mathbb{E}\left[\exp(-\beta\tau_1)\right]$ for any $\beta > 0$
- ► $\tau_1 \leq \tau_{\phi_{\delta,n}(\cdot)} \leq \tau_{-(\log(1-\delta))/\delta}$. So, sufficient to show that $\mathbb{E}[\exp(-\beta \tau_{\psi})]$ is continuous with respect to ψ .
- ▶ Optional sampling theorem: For a martingale X and a stopping time \(\tau\), \(\mathbb{E}[X_\)] = X_0 \) if \(|X_{t \wedge \tau}|\) is bounded for all t.

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n
- Y(t)/n converges in probability to 0 as $n \to \infty$.
- We show $\lim_{\delta\to 0} \mathbb{E}\left[\exp(-\beta\tau_{\phi_{\delta,n}}(\cdot))\right] = \mathbb{E}\left[\exp(-\beta\tau_1)\right]$ for any $\beta > 0$
- ► $\tau_1 \leq \tau_{\phi_{\delta,n}(\cdot)} \leq \tau_{-(\log(1-\delta))/\delta}$. So, sufficient to show that $\mathbb{E}[\exp(-\beta\tau_{\psi})]$ is continuous with respect to ψ .
- ▶ Optional sampling theorem: For a martingale X and a stopping time \(\tau\), \(\mathbb{E}[X_\)] = X_0 \) if \(|X_{t \wedge \tau}|\) is bounded for all t.
- Consider $dZ(t) = -\zeta Z(t-)\{dN(t) dt\}$ and Z(0) = 1, where ζ satisfies $\zeta \psi + \log(1-\zeta) = -\beta$.

- ▶ $\sup_{x \in \Sigma} |\ell_{\delta}(x) 1| < \delta \Rightarrow \ell_{\delta}$ uniformly converges to 1 as $\delta \to 0$.
- ▶ $1 \le \phi_{\delta,n} < -(\log(1-\delta))/\delta$ for sufficiently large n
- Y(t)/n converges in probability to 0 as $n \to \infty$.
- ► We show $\lim_{\delta\to 0} \mathbb{E}\left[\exp(-\beta\tau_{\phi_{\delta,n}(\cdot)})\right] = \mathbb{E}\left[\exp(-\beta\tau_1)\right]$ for any $\beta > 0$
- ► $\tau_1 \leq \tau_{\phi_{\delta,n}(\cdot)} \leq \tau_{-(\log(1-\delta))/\delta}$. So, sufficient to show that $\mathbb{E}[\exp(-\beta\tau_{\psi})]$ is continuous with respect to ψ .
- ▶ Optional sampling theorem: For a martingale X and a stopping time \(\tau\), \(\mathbb{E}[X_\)] = X_0 \) if \(|X_{t \wedge \tau}|\) is bounded for all t.
- Consider dZ(t) = -ζZ(t−){dN(t) − dt} and Z(0) = 1, where ζ satisfies ζψ + log(1 − ζ) = −β.
- ► We obtain $\mathbb{E}[Z(\tilde{\tau}_{\psi})] = 1$ and $\mathbb{E}[\exp(\beta \tau_{\psi})] = \{1 \zeta(\beta, \psi)\}^c$, which is continuous w.r.t. ψ .

Explicit distribution of τ_1 conditional on Y(0)

Proposition 2: As $n \to \infty$ and $\delta \to 0$, M_n^* conditional on Y(0) = c asymptotically follows

$$\Pr(M_n^* = m \mid Y(0) = c) = (c/m)e^{-m}m^{m-c}/(m-c)!, \quad m = c, c+1, \dots$$

Moreover, the tail of the asymptotic distribution follows a power law with exponent 0.5, i.e., $\Pr(M_n^* > m) \propto m^{-0.5}$ for sufficiently large values of m.

Explicit distribution of τ_1 conditional on Y(0)

Proposition 2: As $n \to \infty$ and $\delta \to 0$, M_n^* conditional on Y(0) = c asymptotically follows

$$\Pr(M_n^* = m \mid Y(0) = c) = (c/m)e^{-m}m^{m-c}/(m-c)!, \quad m = c, c+1, \dots$$

Moreover, the tail of the asymptotic distribution follows a power law with exponent 0.5, i.e., $\Pr(M_n^* > m) \propto m^{-0.5}$ for sufficiently large values of m.

Proof: The stopping time of the Poisson process with intensity 1 is equivalent to the sum of a branching process with Poisson distribution with mean 1.

Branching Process with Poisson distribution for the family size

Total propagation size = 10

Unconditional distribution of τ_1

Proposition 3:

Suppose that $n(1 - F_{\delta}^{H}(\bar{x}_{n}(1)))$ converges to a positive constant ϕ_{δ}^{o} as $n \to \infty$. Then for sufficiently small δ and large n, the distribution function of M_{n}^{*} is arbitrarily close to:

$$\Pr(M_n^* = m) = \frac{\phi_{\delta}^{o} e^{-m - \phi_{\delta}^{o}}}{m!} (m + \phi_{\delta}^{o})^{m-1}, \quad m = 0, 1, \dots$$

Moreover, M_n^* has a power-law tail distribution with exponent 0.5.

Intuition: Keynes' beauty contest

- "Critical" strategic complementarity
- The mean number of traders induced to buy by a buying trader is 1.
- Power law: M_n^* can occur at any order of magnitude
- Analogous to indeterminacy in the beauty contest

• At
$$n = \infty$$
,

$$(1-\mu)\log\lambda_n(\bar{x})+\mu\log\Lambda_n(\bar{x})=0$$

for any $\mu = m/n$

Power law: the distribution is scale-free

Numerical simulation: Specifications

- Price impact function $S(p) = 0.5 + 0.5(m/n)^{\gamma}$
- γ = 0.5: the square-root specification (Hasbrouck and Seppi 2001; Lillo, Farmer, and Mantegna 2003)
- X_i are drawn from a normal distribution $N(\mu, \sigma^2)$

•
$$\mu_H = 1$$
, $\mu_L = 0$, $\sigma = 25, 50$

- ▶ *N* = 500, 1000
- True state alternates between H and L
- Monte Carlo simulation with 100,000 draws

Simulated distribution of trading volume

Complementary cumulative distributions of M^* Thinner tails for some parameters: "sweeping of instability" 24/43

Simulated distributions of log P^*

Semi-log density of returns $\log P^* - \log p(0)$

Stock Return Distribution: Model and data

Distributions of TOPIX daily returns, simulated returns $\log P^* - \log p(0)$, and a standard normal distribution

 $26 \, / \, 43$

Stock Return Distribution: Q-Q plot

Quantile-to-quantile comparison of TOPIX daily returns and simulated returns

27 / 43

Discussion

- Informativeness of private signal is minimal (δ → 0)(e.g., unit time is infinitesimal)
- Traders are symmetric (unlike the herd behavior model)
- Information weight: The revealed likelihood of traders' actions may be discounted heterogeneously across traders
 - ► Classical herd behavior model is the case where trader *i* puts weight 1 for traders 1,..., *i* − 1 and 0 for traders *i* + 1, *i* + 2,...
 - Models based on traders' network provide a mechanism to generate such heterogeneous information weights
- Discreteness of actions is important for the private signal to be "hoarded"

Conclusion

- Criticality of trading-volume fluctuations emerges from the information aggregation among traders
- The power-law exponent for the volume is explained without parametric assumptions on environments
- Stock returns may inherit the non-Gaussian distribution of the volume

Digression: Power Laws

- Power exponent α (or Pareto exponent)
- Pareto distribution (1896), income and wealth $\alpha = 1.5$
- Zipf's law (1949), city size $\alpha = 1$
- Lotka (1926), "Law of scientific productivity", the number of papers authored by scientists

Empirical Power Laws

Mark E.J. Newman, "Power laws, Pareto distributions and Zipf's law", *Contemporary Physics*, Vol. 46, No. 5, September-October 2005, 323-351

- $1. \ \mbox{frequency of use of words}, \ 2.20$
- 2. number of citations to papers, 3.04
- 3. number of hits on web sites, 2.40
- 4. copies of books sold in the US, 3.51
- 5. telephone calls received, 2.22
- 6. magnitude of earthquakes, 3.04
- 7. diameter of moon craters, 3.14
- 8. intensity of solar flares, 1.83
- 9. intensity of wars, 1.80
- 10. net worth of Americans, 2.09
- 11. frequency of family names, 1.94
- 12. population of US cities, 2.30

Models for generating power-law distributions (cf Newman)

Model 1: Inverses of stuff Any quantity $x = y^{-\gamma}$, where y is a random variable that takes values around 0, has a power-law tail $p(x) \sim x^{-\alpha}$ where $\alpha = 1 + 1/\gamma$

Model 2: Generalized Central Limit Theorem

A normalized sum of independent random variables converges to a Lévy stable distribution with a tail parameter $\alpha \in (0, 2]$ (and three other parameters)

- ► Gaussian distribution is a special case with α = 2. It is the only stable distribution with finite variance.
- Gaussian distribution is an attractor of distribution functions with finite variance (i.e., Central Limit Theorem)
- Lévy distribution with α < 2 is an attractor of distribution functions with a power-law tail with exponent α
- Normalization: $N^{1/\alpha}$
- ► E(Sum/Maximum) converges to 1/(1-α) for positive-valued distributions in a basin of attraction of a stable law α < 1 (cf. Feller)</p>

Cont'd; Stable laws

- First passage time in Brownian motion, $\alpha = 0.5$
 - Dimension analysis: independent increments + density only depending on x²/t
- Holtsmark distribution (1919) of the gravitation force, $\alpha = 1.5$
 - Dimension analysis: density of mass relating to an inverse of cubed distance, gravity relating to an inverse of squared distance

Extreme Value Theory

The sample maxima $M_n = max(X_1, X_2, ..., X_n)$, properly normalized and centered, asymptotically follows the Generalized Extreme Value Distribution that nests:

- Weibull distribution
 - ► The maximum domain of attraction includes Uniform, Beta, ...
- Gumbel distribution
 - MDA: Exponential, Gamma, Normal, Lognormal, ...
- Fréchet distribution
 - MDA: Cauchy, Pareto, Loggamma, ...
 - has a power-law tail $x^{-\alpha}$

Model 3: Combinations of exponentials

- Combinations of exponentials; "logarithmic Boltzmann law"
 - If y is exponentially distributed p(y) ∼ e^{ay}, then x ∼ e^{by} follows a power law p(x) ∼ x^{-1+a/b} (cf Newman)
 - If y is normally distributed, x follows a log normal.
 - (Maxwell-) Boltzmann distribution: velocities of particles of a gas follows an exponential
 - Kubo: Distribute money (energy) M to N persons (particles). # of possible sequences of numbered money and separators for persons: (M + N - 1)!. # of possible ways to number money and separators: M! and N - 1!. Thus, # of configurations of the distribution is $W(N, M) \equiv (M + N - 1)!/M!/(N - 1)!$. Under the equal a priori probability postulate (fundamental postulate), the money distribution is

 $p(x) = W(N-1,x)/W(N,M) \sim (N/(M+N))(M/(M+N))^{x}$

 Laplace's principle of indifference; Jaynes' principle of maximum entropy

Cont'd

- Multiplicative process with modifications
 - Reflective lower bound; Laplace's law on barometric density distribution
 - Random walk with negative drift and reflective lower bound has a stationary exponential distribution (Mandelbrot 1960; Gabaix 1999; Harrison "Brownian motion and stochastic flow systems" p.14)
 - Kesten process
 - Diffusion with killing (cf Oksendal)
- Yule process (rich-get-richer mechanism)
 - generates Yule distribution $p_x \propto Beta(x, \alpha) \sim x^{-\alpha}$
 - Ijiri and Simon, birth-and-death process, city size
 - Preferential attachment

Model 4: Critical Phenomena

- Phase transition and criticality
- Ising model for ferromagnet (vertex-model)
- Percolation of porous rocks (edge-model)
- Contact process
- Random-cluster models
- Erdos-Renyi random graph
- Renormalization
- Self-organized criticality, sand-pile model, Bak, Chen, Scheinkman, and Woodford (1994), percolation on Bethe lattice

Cont'd

- Fractals; self-similarity
- Scale-free; Macro-micro link
- Highly optimized tolerance (HOT), Fragmentation, etc

Theories for financial fat tails

- Statistical models (Subordinated process, some ARCH, Langevin equation, truncated Levy, etc)
- Agent-based (micro-founded) models
 - Herd behavior models (Scharfstein and Stein 1990; Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992)
 - It explains herdings, but not fat-tails
 - Critical phenomena in statistical physics, network models, agent-based simulations (Bak, Paczuski, Shubik 1997; LeBaron, Arthur, and Palmer 1999; Lux and Marchesi 1999; Stauffer and Sornette 1999; Cont and Bouchaud 2000)
- This paper shows a critical phenomenon in a herd behavior model

A herd behavior model (Banerjee 1992)

- Two restaurants: A and B. 100 customers in line. Each customer observes the choices of customers before him
- Customers' prior belief is slightly in favor of A to B
- In reality, B is better than A
- Each customer draws a private information about the quality.
 99 customers draw bad news about A
- The only customer who gets good news about A happens to be at the first in the line. He chooses A
- Second customer, observing the first customer's choice, chooses A regardless of his own information, because even though he draws a bad news about A, it cancels out with the first customer's revealed information
- All customers end up in the "wrong" restaurant A

Some modeling issues

- Herd in sequential move
 - Herding (everyone takes the same action)
 - Information cascade (agent's action is independent of its private information)
 - Choice set is "coarser" than information set
- Rational expectations equilibrium in a simultaneous-move game
 - Agreeing to disagree (Aumann 1976; Minehart and Scotchmer, GEB 1999)
 - Implementability (cf. Vives, Princeton UP 2008)
- Price impact function
 - No trade theorem (Milgrom and Stokey 1986)
 - Market microstructure (Kyle 1985; Avery and Zemsky, AER 1998; Gabaix et al, QJE 2006)

Related topics

- ϕ : degree of strategic complementarity
 - $\phi = 1$: "perfect" complementarity
 - Keynes' beauty contest: a trader's belief is affected proportionally by the average belief revealed
- Dynamical systems under $\phi = 1$ and discrete actions
 - "Neutral" dynamics; not strongly nonlinear
 - Weakly connected neural network (discrete action as a limit of logistic function); Globally coupled maps (GCM's)
- Role of "perfect" complementarity in macroeconomy
 - Monopolistic supply under duplicable and indivisible technology (CRS globally, IRS locally)
 - "Fragile" equilibrium
 - Monopolistic pricing under monetary neutrality
 - Balance-sheet contagion